Suppr超能文献

心脏线粒体产生过氧化氢的来源有哪些?

What are the sources of hydrogen peroxide production by heart mitochondria?

作者信息

Grivennikova Vera G, Kareyeva Alexandra V, Vinogradov Andrei D

机构信息

Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation.

出版信息

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):939-44. doi: 10.1016/j.bbabio.2010.02.013. Epub 2010 Feb 17.

Abstract

Coupled rat heart mitochondria produce externally hydrogen peroxide at the rates which correspond to about 0.8 and 0.3% of the total oxygen consumption at State 4 with succinate and glutamate plus malate as the respiratory substrates, respectively. Stimulation of the respiratory activities by ADP (State 4-State 3 transition) decreases the succinate- and glutamate plus malate-supported H2O2 production 8- and 1.3-times, respectively. NH4+ strongly stimulates hydrogen peroxide formation with either substrate without any effect on State 4 and/or State 3 respiration. Rotenone-treated, alamethicin-permeabilized mitochondria catalyze NADH-supported H2O2 production at a rate about 10-fold higher than that seen in intact mitochondria under optimal (State 4 succinate-supported respiration in the presence of ammonium chloride) conditions. NADH-supported hydrogen peroxide production by the rotenone-treated mitochondria devoid of a permeability barrier for H2O2 diffusion by alamethicin treatment are only partially (approximately 50%) sensitive to the Complex I NADH binding site-specific inhibitor, NADH-OH. The residual activity is strongly (approximately 6-fold) stimulated by ammonium chloride. NAD+ inhibits both Complex I-mediated and ammonium-stimulated H2O2 production. In the absence of stimulatory ammonium about half of the total NADH-supported hydrogen peroxide production is catalyzed by Complex I. In the presence of ammonium about 90% of the total hydrogen peroxide production is catalyzed by matrix located, ammonium-dependent enzyme(s).

摘要

偶联的大鼠心脏线粒体在以琥珀酸以及谷氨酸加苹果酸作为呼吸底物的状态4下,分别以约占总耗氧量0.8%和0.3%的速率在外部产生过氧化氢。ADP刺激呼吸活性(状态4 - 状态3转变)分别使琥珀酸以及谷氨酸加苹果酸支持的过氧化氢生成量降低8倍和1.3倍。NH₄⁺能强烈刺激两种底物的过氧化氢生成,而对状态4和/或状态3呼吸没有任何影响。经鱼藤酮处理、被阿拉霉素通透化的线粒体催化NADH支持的过氧化氢生成,其速率比在最佳条件下(氯化铵存在时状态4琥珀酸支持的呼吸)完整线粒体中的速率高约10倍。经鱼藤酮处理且通过阿拉霉素处理不存在过氧化氢扩散通透屏障的线粒体,其NADH支持的过氧化氢生成仅对复合体I的NADH结合位点特异性抑制剂NADH - OH部分敏感(约50%)。残余活性受到氯化铵的强烈刺激(约6倍)。NAD⁺抑制复合体I介导的和铵刺激的过氧化氢生成。在没有刺激铵的情况下,总NADH支持的过氧化氢生成中约一半由复合体I催化。在有铵存在的情况下,约90%的总过氧化氢生成由位于基质中的铵依赖性酶催化。

相似文献

1
What are the sources of hydrogen peroxide production by heart mitochondria?
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):939-44. doi: 10.1016/j.bbabio.2010.02.013. Epub 2010 Feb 17.
2
Ammonium-dependent hydrogen peroxide production by mitochondria.
FEBS Lett. 2008 Aug 6;582(18):2719-24. doi: 10.1016/j.febslet.2008.06.054. Epub 2008 Jul 11.
3
Generation of superoxide by the mitochondrial Complex I.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):553-61. doi: 10.1016/j.bbabio.2006.03.013. Epub 2006 Apr 17.
4
Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
Redox Biol. 2018 Jul;17:192-199. doi: 10.1016/j.redox.2018.04.014. Epub 2018 Apr 14.
6
Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
Arch Biochem Biophys. 1995 Feb 1;316(2):815-20. doi: 10.1006/abbi.1995.1109.
8
Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction.
J Appl Physiol (1985). 2007 May;102(5):1793-8. doi: 10.1152/japplphysiol.00849.2006. Epub 2007 Feb 15.
10
Impairment of brain mitochondrial function by hydrogen peroxide.
Brain Res Mol Brain Res. 2000 May 5;77(2):176-84. doi: 10.1016/s0169-328x(00)00049-8.

引用本文的文献

1
Cardiac arrhythmogenesis: roles of ion channels and their functional modification.
Front Physiol. 2024 Mar 4;15:1342761. doi: 10.3389/fphys.2024.1342761. eCollection 2024.
2
Cardiovascular aging: spotlight on mitochondria.
Am J Physiol Heart Circ Physiol. 2024 Feb 1;326(2):H317-H333. doi: 10.1152/ajpheart.00632.2023. Epub 2023 Dec 1.
3
Cardiomyocyte electrophysiology and its modulation: current views and future prospects.
Philos Trans R Soc Lond B Biol Sci. 2023 Jun 19;378(1879):20220160. doi: 10.1098/rstb.2022.0160. Epub 2023 May 1.
4
Mitophagy initiates retrograde mitochondrial-nuclear signaling to guide retinal pigment cell heterogeneity.
Autophagy. 2023 Mar;19(3):966-983. doi: 10.1080/15548627.2022.2109286. Epub 2022 Aug 13.
5
Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids.
Front Mol Neurosci. 2022 Apr 29;15:840265. doi: 10.3389/fnmol.2022.840265. eCollection 2022.
8
Low-Dose Ammonium Preconditioning Enhances Endurance in Submaximal Physical Exercises.
Sports (Basel). 2021 Feb 16;9(2):29. doi: 10.3390/sports9020029.
9
Can N-3 polyunsaturated fatty acids be considered a potential adjuvant therapy for COVID-19-associated cardiovascular complications?
Pharmacol Ther. 2021 Mar;219:107703. doi: 10.1016/j.pharmthera.2020.107703. Epub 2020 Oct 5.

本文引用的文献

1
Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles.
J Biol Chem. 2009 Jul 17;284(29):19203-10. doi: 10.1074/jbc.M109.017376. Epub 2009 May 28.
2
An attempt to prevent senescence: a mitochondrial approach.
Biochim Biophys Acta. 2009 May;1787(5):437-61. doi: 10.1016/j.bbabio.2008.12.008. Epub 2008 Dec 29.
3
Ammonium-dependent hydrogen peroxide production by mitochondria.
FEBS Lett. 2008 Aug 6;582(18):2719-24. doi: 10.1016/j.febslet.2008.06.054. Epub 2008 Jul 11.
4
The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex.
J Biol Chem. 2008 Aug 1;283(31):21649-54. doi: 10.1074/jbc.M803236200. Epub 2008 Jun 3.
5
Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I.
Biochemistry. 2007 Sep 25;46(38):10971-8. doi: 10.1021/bi7009822. Epub 2007 Aug 31.
6
7
Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.
J Biol Chem. 2007 Jan 12;282(2):1183-92. doi: 10.1074/jbc.M603761200. Epub 2006 Nov 14.
8
Similar transition states mediate the Q-cycle and superoxide production by the cytochrome bc1 complex.
J Biol Chem. 2006 Dec 15;281(50):38459-65. doi: 10.1074/jbc.M605119200. Epub 2006 Sep 28.
9
The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7607-12. doi: 10.1073/pnas.0510977103. Epub 2006 May 8.
10
Generation of superoxide by the mitochondrial Complex I.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):553-61. doi: 10.1016/j.bbabio.2006.03.013. Epub 2006 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验