Department of Pulmonology, VU University Medical Center, Amsterdam 1007 MB, The Netherlands.
IEEE Trans Biomed Eng. 2010 Jul;57(7):1531-8. doi: 10.1109/TBME.2010.2041351. Epub 2010 Feb 17.
A windkessel model is widely used to operationalize vascular characteristics. In this paper, we employ a noniterative subspace model identification (SMI) algorithm to estimate parameters in a three- and four-element windkessel model by application of physical foreknowledge. Simulation data of the systemic circulation were used to investigate systematic and random errors in the parameter estimations. Results were compared with different methods as proposed in the literature: one closed-loop and two iterative methods for the three-element model, and one iterative method for the four-element model. For the three-element model, no significant systematic errors were observed using SMI. Concerning random errors, SMI appeared more robust in parameter estimations compared with the other methods (P < 0.05 for a signal-to-noise ratio of 18 dB). For the four-element model, a significant systematic error in the estimate of the arterial inertance L was observed (P = 0.011). However, for all methods, an increasing number of outliers in parameter estimates were observed at increased noise levels. These outliers were almost exclusive due to errors in estimates of L. In conclusion, with SMI physical parameters can mathematically be derived by application of physiological foreknowledge. For a three-element windkessel model, SMI appeared a very robust method to estimate parameters. However, application to a four-element windkessel model was less accurate because of low identifiability of L. Therefore, based on the simulation results, the use of the four-element windkessel model is questionable.
脉管模型广泛用于操作血管特征。在本文中,我们采用非迭代子空间模型识别(SMI)算法,通过应用物理先验知识来估计三元件和四元件脉管模型中的参数。使用全身循环的仿真数据来研究参数估计中的系统和随机误差。结果与文献中提出的不同方法进行了比较:三元件模型的一种闭环和两种迭代方法,以及四元件模型的一种迭代方法。对于三元件模型,SMI 没有观察到显著的系统误差。关于随机误差,与其他方法相比,SMI 在参数估计中表现出更高的稳健性(信噪比为 18 dB 时 P < 0.05)。对于四元件模型,观察到动脉惯性 L 的估计存在显著的系统误差(P = 0.011)。然而,对于所有方法,在噪声水平增加时,参数估计中的异常值数量都增加。这些异常值几乎完全是由于 L 的估计误差引起的。总之,通过应用生理先验知识,SMI 可以从数学上推导出物理参数。对于三元件脉管模型,SMI 似乎是一种非常稳健的参数估计方法。然而,由于 L 的可识别性较低,应用于四元件脉管模型的效果较差。因此,基于仿真结果,四元件脉管模型的使用值得怀疑。