Medical Imagery Research Team, Unité de Formation et de Recherche Médecine, University of Clermont 1, Clermont-Ferrand, France.
Neurosurgery. 2010 Mar;66(3 Suppl Operative):161-72. doi: 10.1227/01.NEU.0000365617.41061.A3.
Since the pioneering studies of human thalamic anatomy based on histology and binding techniques, little new work has been done to bring this knowledge into clinical practice.
With the advent of magnetic resonance imaging (MRI) we hypothesized that it was possible, in vitro, to make use of high spontaneous MRI contrasts between white and grey matter to directly identify the subcompartmentalisation of the thalamus.
An anatomic specimen was imaged at high field (4.7 T) (basal ganglia plus thalamus block; 3-dimensional (3D) T1-weighted spin echo sequence; matrix, 256 x 256 x 256; isotropic voxel, 0.250 mm/edge; total acquisition time, 14 hours 30 minutes). Nuclei were manually contoured on the basis of spontaneous contrasted structures; labeling relied on 3D identification from classic knowledge; stereotactic location of centers of nuclei was computed.
Almost all intrathalamic substructures, nuclei, and white matter laminae were identified. Using 3D analysis, a simplified classification of intrathalamic nuclei into 9 groups was proposed, based on topographic MRI anatomy, designed for clinical practice: anterior (oral), posterior, dorsal, intermediate, ventral, medial, laminar, superficial, and related (epi and metathalamus). The overall 4.7-T anatomy matches that presented in the atlases of Schaltenbrand and Bailey (1959), Talairach et al (1957), and Morel et al (1997).
It seems possible to identify the subcompartments of the thalamus by spontaneous MRI contrast, allowing a tissue architectural approach. In addition, the MRI tissue architecture matches the earlier subcompartmentalization based on cyto- and chemoarchitecture. This true 3D anatomic study of the thalamus may be useful in clinical neuroscience and neurosurgical applications.
自基于组织学和结合技术的开创性人类丘脑解剖研究以来,很少有新的工作将这些知识应用于临床实践。
随着磁共振成像(MRI)的出现,我们假设有可能在体外利用白质和灰质之间自发的高 MRI 对比来直接识别丘脑的亚区隔化。
对高场(4.7T)的解剖标本进行成像(基底节加丘脑块;三维(3D)T1 加权自旋回波序列;矩阵,256x256x256;各向同性体素,0.250mm/边缘;总采集时间,14 小时 30 分钟)。根据自发对比结构手动勾画核;标签依赖于经典知识的 3D 识别;计算核中心的立体定位位置。
几乎所有的丘脑内亚结构、核和白质层都被识别出来。使用 3D 分析,根据基于 MRI 解剖的拓扑结构,提出了一种将丘脑内核简化为 9 组的分类方法,旨在用于临床实践:前(口)、后、背、中间、腹、内、层状、浅层和相关(丘脑上皮和丘脑下)。4.7T 整体解剖与 Schaltenbrand 和 Bailey(1959)、Talairach 等人(1957)和 Morel 等人(1997)的图谱呈现的解剖结构相匹配。
通过自发 MRI 对比似乎可以识别丘脑的亚区隔,从而实现组织架构方法。此外,MRI 组织架构与基于细胞和化学架构的早期亚区隔化相匹配。这项对丘脑的真正 3D 解剖研究可能对临床神经科学和神经外科应用有用。