Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, S3000ZAA, Argentina.
Analyst. 2010 Mar;135(3):636-42. doi: 10.1039/b922547a. Epub 2010 Jan 15.
Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.
相关约束多元曲线分辨-交替最小二乘法被证明是一种可行的方法,可用于处理一阶仪器数据,并在存在意外干扰的情况下实现分析物的定量。对于模拟和实验数据集,所提出的方法可以正确地检索分析物和干扰的光谱轮廓,并对测试样品中的分析物浓度进行准确估计。由于校准样品中不存在有关干扰的信息,因此包括相关约束的提出的多元校准方法有助于实现所谓的二阶优势,对于感兴趣的分析物,已知存在更复杂的更高阶更丰富的仪器数据。该方法使用模拟数据集和两个实验数据系统进行了测试,一个用于使用紫外可见吸收光谱数据测定粉末果汁中的抗坏血酸,另一个用于使用荧光发射光谱法测定血清样品中的四环素。