Suppr超能文献

模拟微重力会扰乱肌动蛋白聚合,促进人永生化 Eahy926 细胞中与一氧化氮相关的迁移。

Simulated microgravity perturbs actin polymerization to promote nitric oxide-associated migration in human immortalized Eahy926 cells.

机构信息

Vascular Biology Lab, AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai, 600044, India.

出版信息

Protoplasma. 2010 Jun;242(1-4):3-12. doi: 10.1007/s00709-010-0114-z. Epub 2010 Feb 20.

Abstract

Microgravity causes endothelium dysfunctions and vascular endothelium remodeling in astronauts returning from space flight. Cardiovascular deconditioning occurs as a consequence of an adaptive response to microgravity partially due to the effects exerted at cellular level. Directional migration of endothelial cell which are central in maintaining the structural integrity of vascular walls is regulated by chemotactic, haptotactic, and mechanotactic stimuli which are essential for vasculogenesis. We explored the migration property of transformed endothelial cells (EC) exposed to 2-h microgravity, simulated using a three-dimensional clinostat constructed based on blueprint published by the Fokker Space, Netherlands. Migration of EC was measured using the scrap wound healing in the presence or absence of actin polymerization inhibitor-cytochalasin D (CD) in Eahy926 cell lines. Simulated microgravity increased cellular migration by 25% while CD-blocked microgravity induced cellular migration. The key migratory structures of cells, filopodia and lamellipodia, formed by EC were more in simulated microgravity compared to gravity. Parallel experiments with phalloidin and diaminorhodamine-4M (DAR-4M) showed that simulated microgravity caused actin rearrangements that lead to 25% increase in nitric oxide production. Further nitric oxide measurements showed a higher nitric oxide production which was not abrogated by phosphoinositol 3 kinase inhibitor (Wortmanin). Bradykinin, an inducer of nitric oxide, prompted two folds higher nitric oxide production along with simulated microgravity in a synergistic manner. We suggest that limited exposure to simulated microgravity increases Eahy926 cell migration by modulating actin and releasing nitric oxide.

摘要

微重力会导致宇航员从太空返回后出现内皮功能障碍和血管内皮重构。心血管功能下降是对微重力的适应性反应的结果,部分原因是细胞水平的影响。内皮细胞的定向迁移对于维持血管壁的结构完整性至关重要,它受趋化、贴壁和力学刺激的调节,这些刺激对于血管生成是必需的。我们探索了暴露于 2 小时微重力下的转化内皮细胞 (EC) 的迁移特性,该特性使用基于荷兰 Fokker Space 发布的蓝图构建的三维回旋仪进行模拟。在 Eahy926 细胞系中,使用划痕愈合法在存在或不存在肌动蛋白聚合抑制剂细胞松弛素 D (CD) 的情况下测量 EC 的迁移。模拟微重力使细胞迁移增加了 25%,而 CD 阻断微重力诱导细胞迁移。与重力相比,模拟微重力下 EC 形成的关键迁移结构丝状伪足和片状伪足更多。与鬼笔环肽和二氨基罗丹明-4M(DAR-4M)的平行实验表明,模拟微重力导致肌动蛋白重排,从而使一氧化氮产量增加 25%。进一步的一氧化氮测量显示,一氧化氮产量更高,而磷酰肌醇 3 激酶抑制剂(Wortmanin)不能阻断其产生。缓激肽是一氧化氮的诱导剂,与模拟微重力协同作用,使一氧化氮的产生增加两倍。我们认为,有限的模拟微重力暴露通过调节肌动蛋白和释放一氧化氮来增加 Eahy926 细胞的迁移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验