Suppr超能文献

模拟微重力通过RhoA依赖的肌动蛋白细胞骨架重排促进血管生成。

Simulated Microgravity Promotes Angiogenesis through RhoA-Dependent Rearrangement of the Actin Cytoskeleton.

作者信息

Shi Fei, Wang Yong-Chun, Hu Ze-Bing, Xu Hong-Yu, Sun Jing, Gao Yuan, Li Xiao-Tao, Yang Chang-Bin, Xie Chao, Li Cheng-Fei, Zhang Shu, Zhao Jiang-Dong, Cao Xin-Sheng, Sun Xi-Qing

出版信息

Cell Physiol Biochem. 2017;41(1):227-238. doi: 10.1159/000456060. Epub 2017 Jan 20.

Abstract

BACKGROUND/AIMS: Microgravity leads to hydrodynamic alterations in the cardiovascular system and is associated with increased angiogenesis, an important aspect of endothelial cell behavior to initiate new vessel growth. Given the critical role of Rho GTPase-dependent cytoskeleton rearrangement in cell migration, small GTPase RhoA might play a potential role in microgravity-induced angiogenesis.

METHODS

We examined the organization of actin filaments by FITC-conjugated phalloidin staining, as well as the expression and activity of RhoA by quantitative PCR and Western blot, in human umbilical vein endothelial cells (HUVECs) under normal gravity and simulated microgravity. Effect of simulated microgravity on the wound closure and tube formation in HUVECs, and their dependence on RhoA, were also analyzed by cell migration and tube formation assays.

RESULTS

We show that in HUVECs actin filaments are disorganized and RhoA activity is reduced by simulated microgravity. Blocking RhoA activity either by C3 transferase Rho inhibitor or siRNA knockdown mimicked the effect of simulated microgravity on inducing actin filament disassembly, followed by enhanced wound closure and tube formation in HUVECs, which closely resembled effects seen on microgravity-treated cells. In contrast, overexpressing RhoA in microgravity-treated HUVECs restored the actin filaments, and decreased wound closure and tube formation abilities.

CONCLUSION

These results suggest that RhoA inactivation is involved in the actin rearrangement-associated angiogenic responses in HUVECs during simulated microgravity.

摘要

背景/目的:微重力会导致心血管系统的流体动力学改变,并与血管生成增加相关,血管生成是内皮细胞启动新血管生长行为的一个重要方面。鉴于Rho GTPase依赖的细胞骨架重排在细胞迁移中起关键作用,小GTPase RhoA可能在微重力诱导的血管生成中发挥潜在作用。

方法

我们通过用异硫氰酸荧光素(FITC)偶联的鬼笔环肽染色来检测肌动蛋白丝的组织情况,以及通过定量PCR和蛋白质印迹法检测正常重力和模拟微重力条件下的人脐静脉内皮细胞(HUVECs)中RhoA的表达和活性。还通过细胞迁移和管形成实验分析了模拟微重力对HUVECs伤口愈合和管形成的影响及其对RhoA的依赖性。

结果

我们发现,在HUVECs中,模拟微重力会导致肌动蛋白丝紊乱且RhoA活性降低。通过C3转移酶Rho抑制剂或小干扰RNA(siRNA)敲低来阻断RhoA活性,模拟了模拟微重力对诱导肌动蛋白丝解聚的作用,随后增强了HUVECs的伤口愈合和管形成能力,这与在微重力处理细胞上看到的效果非常相似。相反,在微重力处理的HUVECs中过表达RhoA可恢复肌动蛋白丝,并降低伤口愈合和管形成能力。

结论

这些结果表明,在模拟微重力期间,RhoA失活参与了HUVECs中与肌动蛋白重排相关的血管生成反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验