Rink R, Arkema-Meter A, Baudoin I, Post E, Kuipers A, Nelemans S A, Akanbi M Haas Jimoh, Moll G N
BiOMaDe Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
J Pharmacol Toxicol Methods. 2010 Mar-Apr;61(2):210-8. doi: 10.1016/j.vascn.2010.02.010. Epub 2010 Feb 20.
The major hurdle in the application and delivery of peptide pharmaceuticals is their rapid in vivo breakdown.
We here combined two approaches to stabilize peptide pharmaceuticals, introduction of D-amino acids and cyclization, by applying an innovative enzymatic method. This method yields peptides with thioether bridges between a D-amino acid and an L-amino acid. On the basis of guidelines concerning the flanking residues of serines/threonines and cysteines, a peptide of interest is designed with serine/threonine and cysteine at appropriate positions to allow their effective participation in cyclization. In Lactococcus lactis the peptide of interest is directly or via a spacer genetically fused to a lantibiotic leader peptide which induces enzyme-catalysed synthesis of a thioether-bridged peptide. The peptide is translocated via a lantibiotic transporter, analysed by mass spectrometry and the leader peptide is removed. Because of its therapeutic relevance and terminal modifications we chose the decapeptide Luteïnizing Hormone Release Hormone (LHRH) as a test case for thioether bridge introduction. The N-terminal pyroglutamate protects against aminopeptidase activity; the amidated C-terminus, which occurs in 50% of all therapeutic peptides, precludes carboxypeptidase action and is essential for optimal receptor interaction. We had Lactococcus posttranslationally introduce a thioether bridge between residues 4 and 7 of the Leu7Cys-LHRH analog QHWSYGCRPG. The N-terminal glutamine of the thioether-bridged peptide could be converted in pyroglutamate. The introduction of the thioether bridge proved to be compatible with subsequent chemical and enzymatic amidation methods. In this way biologically produced thioether LHRH was compared with LHRH isomers obtained by base-assisted sulfur extrusion.
Biologically produced thioether LHRH is the most stable thioether LHRH isomer with strongly enhanced proteolytic resistance compared to natural LHRH.
The data convincingly demonstrate the broad perspective of stereo- and regiospecifically generating cyclized peptide pharmaceuticals with significantly enhanced therapeutic potential.
肽类药物在应用和递送过程中的主要障碍是其在体内的快速分解。
我们在此结合了两种稳定肽类药物的方法,即通过应用一种创新的酶促方法引入D-氨基酸和进行环化。该方法产生的肽在D-氨基酸和L-氨基酸之间形成硫醚桥。根据关于丝氨酸/苏氨酸和半胱氨酸侧翼残基的指导原则,在适当位置设计带有丝氨酸/苏氨酸和半胱氨酸的目标肽,以使其有效参与环化。在乳酸乳球菌中,目标肽直接或通过间隔区与羊毛硫抗生素前导肽基因融合,该前导肽诱导酶催化合成硫醚桥连接的肽。该肽通过羊毛硫抗生素转运体转运,通过质谱分析,并去除前导肽。由于其治疗相关性和末端修饰,我们选择十肽促黄体生成激素释放激素(LHRH)作为引入硫醚桥的测试案例。N端焦谷氨酸可防止氨肽酶活性;酰胺化的C端存在于所有治疗性肽的50%中,可防止羧肽酶作用,并且对于最佳受体相互作用至关重要。我们让乳酸乳球菌在Leu7Cys-LHRH类似物QHWSYGCRPG的第4和7位残基之间翻译后引入硫醚桥。硫醚桥连接肽的N端谷氨酰胺可转化为焦谷氨酸。事实证明,硫醚桥的引入与后续的化学和酶促酰胺化方法兼容。通过这种方式,将生物产生的硫醚LHRH与通过碱辅助硫挤出获得的LHRH异构体进行了比较。
生物产生的硫醚LHRH是最稳定的硫醚LHRH异构体,与天然LHRH相比,其抗蛋白水解能力大大增强。
数据令人信服地证明了立体和区域特异性生成具有显著增强治疗潜力的环化肽类药物的广阔前景。