Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura and Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453 Buenos Aires C1417DSE, Argentina.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4618-22. doi: 10.1073/pnas.0909396107. Epub 2010 Feb 22.
Plant litter decomposition is a critical step in the formation of soil organic matter, the mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems. Biotic decomposition in mesic ecosystems is generally negatively correlated with the concentration of lignin, a group of complex aromatic polymers present in plant cell walls that is recalcitrant to enzymatic degradation and serves as a structural barrier impeding microbial access to labile carbon compounds. Although photochemical mineralization of carbon has recently been shown to be important in semiarid ecosystems, litter chemistry controls on photodegradative losses are not understood. We evaluated the importance of litter chemistry on photodegradation of grass litter and cellulose substrates with varying levels of lignin [cellulose-lignin (CL) substrates] under field conditions. Using wavelength-specific light attenuation filters, we found that light-driven mass loss was promoted by both UV and visible radiation. The spectral dependence of photodegradation correlated with the absorption spectrum of lignin but not of cellulose. Field incubations demonstrated that increasing lignin concentration reduced biotic decomposition, as expected, but linearly increased photodegradation. In addition, lignin content in CL substrates consistently decreased in photodegradative incubations. We conclude that lignin has a dual role affecting litter decomposition, depending on the dominant driver (biotic or abiotic) controlling carbon turnover. Under photodegradative conditions, lignin is preferentially degraded because it acts as an effective light-absorbing compound over a wide range of wavelengths. This mechanistic understanding of the role of lignin in plant litter decomposition will allow for more accurate predictions of carbon dynamics in terrestrial ecosystems.
植物凋落物分解是土壤有机质形成、有机养分矿化以及陆地生态系统碳平衡的关键步骤。在湿润生态系统中,生物分解通常与木质素浓度呈负相关,木质素是植物细胞壁中一组复杂的芳香聚合物,难以被酶降解,并且作为结构障碍阻碍微生物对易分解碳化合物的利用。尽管最近已经表明,半干旱生态系统中光化学矿化对碳的重要性,但对凋落物化学控制光降解损失的机制尚不清楚。我们评估了凋落物化学对草类凋落物和不同木质素水平的纤维素基质(纤维素-木质素(CL)基质)光降解的重要性,在野外条件下进行了评估。使用波长特异性光衰减滤光片,我们发现光驱动的质量损失既受紫外线又受可见光辐射的促进。光降解的光谱依赖性与木质素的吸收光谱相关,但与纤维素无关。野外培养实验表明,随着木质素浓度的增加,生物分解减少,这是预期的,但线性增加了光降解。此外,CL 基质中的木质素含量在光降解培养中持续减少。我们得出结论,木质素有双重作用,影响凋落物分解,这取决于控制碳周转的主要驱动因素(生物或非生物)。在光降解条件下,木质素优先降解,因为它作为一种有效的光吸收化合物,在广泛的波长范围内起作用。这种对木质素在植物凋落物分解中的作用的机制理解将使我们能够更准确地预测陆地生态系统中的碳动态。