Suppr超能文献

异亮氨酰-tRNA 合成酶基因的扩增有助于沙门氏菌适应粘菌素耐药的适应性代价。

Amplification of the gene for isoleucyl-tRNA synthetase facilitates adaptation to the fitness cost of mupirocin resistance in Salmonella enterica.

机构信息

Department of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616, USA.

出版信息

Genetics. 2010 May;185(1):305-12. doi: 10.1534/genetics.109.113514. Epub 2010 Feb 22.

Abstract

Mutations that cause resistance to antibiotics in bacteria often reduce growth rate by impairing some essential cellular function. This growth impairment is expected to counterselect resistant organisms from natural populations following discontinuation of antibiotic therapy. Unfortunately (for disease control) bacteria adapt and improve their growth rate, often without losing antibiotic resistance. This adaptation process was studied in mupirocin-resistant (Mup(R)) strains of Salmonella enterica. Mupirocin (Mup) is an isoleucyl-adenylate analog that inhibits the essential enzyme, isoleucyl-tRNA synthetase (IleRS). Mutations causing Mup(R) alter IleRS and reduce growth rate. Fitness is restored by any of 23 secondary IleRS amino acid substitutions, 60% of which leave resistance unaffected. Evidence that increased expression of the original mutant ileS gene (Mup(R)) also improves fitness while maintaining resistance is presented. Expression can be increased by amplification of the ileS gene (more copies) or mutations that improve the ileS promoter (more transcription). Some adapted strains show both ileS amplification and an improved promoter. This suggests a process of adaptation initiated by common amplifications and followed by later acquisition of rare point mutations. Finally, a point mutation in one copy relaxes selection and allows loss of defective ileS copies. This sequence of events is demonstrated experimentally. A better understanding of adaptation can explain why antibiotic resistance persists in bacterial populations and may help identify drugs that are least subject to this problem.

摘要

导致细菌对抗生素产生耐药性的突变通常会通过损害某些必需的细胞功能来降低生长速度。抗生素治疗停止后,这种生长抑制预计会从自然种群中反向选择耐药生物。不幸的是(对疾病控制而言),细菌会适应并提高其生长速度,而通常不会失去抗生素耐药性。沙门氏菌中耐 mupirocin(Mup(R))的菌株研究了这一适应过程。Mupirocin(Mup)是一种异亮氨酰-腺苷酸类似物,可抑制必需酶异亮氨酰-tRNA 合成酶(IleRS)。导致 Mup(R)的突变改变了 IleRS 并降低了生长速度。通过 23 种次要的 IleRS 氨基酸取代中的任何一种都可以恢复适应性,其中 60%的取代不会影响耐药性。提出了证据表明,原始突变 ileS 基因(Mup(R))的表达增加也可以在保持耐药性的同时提高适应性。表达可以通过 ileS 基因的扩增(更多拷贝)或改善 ileS 启动子的突变(更多转录)来增加。一些适应的菌株显示出 ileS 扩增和改善的启动子两者兼具。这表明适应过程首先是通过常见的扩增引发,然后再获得罕见的点突变。最后,一个拷贝中的点突变会放松选择,从而导致缺陷 ileS 拷贝的丢失。实验证明了这一系列事件。更好地了解适应机制可以解释为什么抗生素耐药性在细菌种群中持续存在,并可能有助于确定受此问题影响最小的药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验