Capobianco J O, Doran C C, Goldman R C
Anti-Infective Research Division, Abbott Laboratories, Abbott Park, Illinois 60064.
Antimicrob Agents Chemother. 1989 Feb;33(2):156-63. doi: 10.1128/AAC.33.2.156.
Pseudomonic acid A (mupirocin) blocks protein synthesis in bacteria by inhibition of bacterial isoleucyl-tRNA synthetase. [16, 17-3H]mupirocin, isolated from a methionine auxotroph of Pseudomonas fluorescens, was used to study transport of this antibiotic into sensitive and resistant strains of Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The transport of mupirocin into sensitive bacteria was energy independent and temperature dependent (decreased uptake at lower temperatures), indicating non-carrier-mediated passive diffusion. Uptake was also saturable with time or increasing antibiotic concentration. The saturable intracellular binding site, most likely the target isoleucyl-tRNA synthetase as determined by the amount of bound mupirocin (2,700 to 3,100 molecules per cell), caused concentration of the antibiotic within the cell. E. coli transformed with a plasmid containing ileS overproduced the target enzyme and demonstrated greater accumulation of mupirocin than a strain containing a control plasmid. The concentrations needed to half saturate (Kd) these binding sites in B. subtilis and S. aureus were 35 and 7 nM, respectively. In gram-positive organisms trained for mupirocin resistance, uptake was not saturable with increasing antibiotic concentration, and intra- and extracellular concentrations of drug equilibrated with time. Kinetic analysis of crude isoleucyl-tRNA synthetase from trained and untrained B. subtilis strains revealed differences in apparent Ki for mupirocin (resistant strain SB23T, Ki = 71.1 nM; sensitive strain SB23, Ki = 33.5 nM), while the Km for isoleucine remained unchanged (2.7 to 2.9 microM). A Km of 0.4 micromolar isoleucine and Ki of 24 nM mupirocin was demonstrated for isoleucyl-tRNA synthetase from sensitive S. aureus 730a, while no isoleucyl-tRNA synthetase activity was detected in extracts of resistance-trained S. aureus 3000 even at 40 micromolar isoleucine, suggesting instability of the enzyme. Free isoleucine pools differed between sensitive (0.26 micromolar) and resistance-trained (1.06 micromolar) S. aureus. Our results demonstrate that (i) mupirocin enters cells by passive diffusion, (ii) mupirocin concentrates in sensitive bacteria due to binding to isoleucyl-tRNA synthetase, and (iii) resistance to mupirocin involves restricted access to the binding site of isoleucyl-tRNA synthetase.
假单胞菌酸A(莫匹罗星)通过抑制细菌异亮氨酰 - tRNA合成酶来阻断细菌中的蛋白质合成。从荧光假单胞菌的甲硫氨酸营养缺陷型中分离出的[16,17 - 3H]莫匹罗星,被用于研究这种抗生素向枯草芽孢杆菌、金黄色葡萄球菌和大肠杆菌的敏感及耐药菌株中的转运。莫匹罗星向敏感细菌中的转运不依赖能量,但依赖温度(在较低温度下摄取减少),表明是非载体介导的被动扩散。摄取也会随时间或抗生素浓度增加而饱和。这种可饱和的细胞内结合位点,很可能是目标异亮氨酰 - tRNA合成酶(根据结合的莫匹罗星量确定,每个细胞有2700至3100个分子),导致抗生素在细胞内浓缩。用含有ileS的质粒转化的大肠杆菌过量产生目标酶,并且与含有对照质粒的菌株相比,显示出更高的莫匹罗星积累量。在枯草芽孢杆菌和金黄色葡萄球菌中使这些结合位点半饱和(Kd)所需的浓度分别为35 nM和7 nM。在对莫匹罗星耐药的革兰氏阳性菌中,随着抗生素浓度增加摄取不饱和,并且药物的细胞内和细胞外浓度随时间达到平衡。对来自经过耐药训练和未经过训练的枯草芽孢杆菌菌株的粗异亮氨酰 - tRNA合成酶进行动力学分析,发现对莫匹罗星的表观Ki存在差异(耐药菌株SB23T,Ki = 71.1 nM;敏感菌株SB23,Ki = 33.5 nM),而异亮氨酸的Km保持不变(2.7至2.9 microM)。对于敏感的金黄色葡萄球菌730a的异亮氨酰 - tRNA合成酶,异亮氨酸的Km为0.4微摩尔,莫匹罗星的Ki为24 nM,而在经过耐药训练的金黄色葡萄球菌3000的提取物中,即使在40微摩尔异亮氨酸时也未检测到异亮氨酰 - tRNA合成酶活性,表明该酶不稳定。敏感(0.26微摩尔)和经过耐药训练(1.06微摩尔)的金黄色葡萄球菌中的游离异亮氨酸池不同。我们的结果表明:(i)莫匹罗星通过被动扩散进入细胞;(ii)莫匹罗星由于与异亮氨酰 - tRNA合成酶结合而在敏感细菌中浓缩;(iii)对莫匹罗星的耐药性涉及对异亮氨酰 - tRNA合成酶结合位点的 access受限。 (注:access此处可能有误,结合前文推测可能是“进入”的意思,但原文如此,直接翻译为“ access”)