Suppr超能文献

在酿酒酵母中,辅助沉默子和边界元件维持 HMR 处高水平的沉默蛋白。

An auxiliary silencer and a boundary element maintain high levels of silencing proteins at HMR in Saccharomyces cerevisiae.

机构信息

Institute for Genome Sciences and Policy and Department of Biochemistry, Duke University, Durham, NC 27708, USA.

出版信息

Genetics. 2010 May;185(1):113-27. doi: 10.1534/genetics.109.113100. Epub 2010 Feb 22.

Abstract

Heterochromatin is notable for its capacity to propagate along a chromosome. The prevailing model for this spreading process postulates that silencing proteins are first recruited to silencer sequences and then spread from these sites independently of the silencers. However, we found that in Saccharomyces cerevisiae silencers also influence the extent of silenced chromatin domains. We compared the abilities of two different silencers, HMR-E and a telomeric repeat, to promote silencing and found that the HMR-E silencer contributed to an increased steady-state association of Sir proteins over a region of several kilobase pairs compared to the telomeric repeat, even though both silencers recruited similar levels of Sir proteins. We also discovered that, although the HMR-E silencer alone was sufficient to block transcription of the HMR locus, a secondary silencer, HMR-I, boosted the level of Sir proteins at HMR, apparently beyond the level necessary to repress transcription. Finally, we discovered that a tRNA(Thr) gene near HMR-I helped maintain silenced chromatin and transcriptional repression under conditions of reduced deacetylase activity. This study highlights the importance of auxiliary elements, such as HMR-I and the tRNA(Thr) gene, in enhancing the association of Sir silencing proteins with appropriate genomic locations, thereby buffering the capacity of silenced chromatin to assemble under suboptimal conditions.

摘要

异染色质的一个显著特点是能够沿着染色体传播。这种扩散过程的主流模型假设沉默蛋白首先被招募到沉默序列,然后独立于沉默序列从这些位点扩散。然而,我们发现酿酒酵母中的沉默子也会影响沉默染色质区域的范围。我们比较了两个不同的沉默子,HMR-E 和端粒重复序列,发现与端粒重复序列相比,HMR-E 沉默子促进了 Sir 蛋白在几个千碱基对的区域中的稳定结合,即使这两个沉默子都招募了相似水平的 Sir 蛋白。我们还发现,尽管 HMR-E 沉默子本身足以阻止 HMR 基因座的转录,但一个次要的沉默子 HMR-I 会增加 HMR 处的 Sir 蛋白水平,显然超过了抑制转录所需的水平。最后,我们发现 HMR-I 附近的 tRNA(Thr)基因有助于在去乙酰化酶活性降低的条件下维持沉默染色质和转录抑制。这项研究强调了辅助元件(如 HMR-I 和 tRNA(Thr)基因)的重要性,这些元件有助于 Sir 沉默蛋白与适当的基因组位置结合,从而缓冲沉默染色质在非最佳条件下组装的能力。

相似文献

1
An auxiliary silencer and a boundary element maintain high levels of silencing proteins at HMR in Saccharomyces cerevisiae.
Genetics. 2010 May;185(1):113-27. doi: 10.1534/genetics.109.113100. Epub 2010 Feb 22.
2
A silencer promotes the assembly of silenced chromatin independently of recruitment.
Mol Cell Biol. 2009 Jan;29(1):43-56. doi: 10.1128/MCB.00983-08. Epub 2008 Oct 27.
3
Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae.
Mol Biol Cell. 2002 Jul;13(7):2207-22. doi: 10.1091/mbc.e02-03-0175.
5
Sir3 and epigenetic inheritance of silent chromatin in Saccharomyces cerevisiae.
Mol Cell Biol. 2012 Jul;32(14):2784-93. doi: 10.1128/MCB.06399-11. Epub 2012 May 14.
6
Functions of protosilencers in the formation and maintenance of heterochromatin in Saccharomyces cerevisiae.
PLoS One. 2012;7(5):e37092. doi: 10.1371/journal.pone.0037092. Epub 2012 May 17.
7
Evolution and Functional Trajectory of Sir1 in Gene Silencing.
Mol Cell Biol. 2016 Jan 25;36(7):1164-79. doi: 10.1128/MCB.01013-15.

引用本文的文献

2
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.
Genetics. 2016 Aug;203(4):1563-99. doi: 10.1534/genetics.112.145243.
3
Mating-type genes and MAT switching in Saccharomyces cerevisiae.
Genetics. 2012 May;191(1):33-64. doi: 10.1534/genetics.111.134577.
4
The tail-module of yeast Mediator complex is required for telomere heterochromatin maintenance.
Nucleic Acids Res. 2012 Jan;40(2):581-93. doi: 10.1093/nar/gkr757. Epub 2011 Sep 19.
5
Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage.
Eukaryot Cell. 2011 Sep;10(9):1183-92. doi: 10.1128/EC.05123-11. Epub 2011 Jul 15.
6
A cis-acting tRNA gene imposes the cell cycle progression requirement for establishing silencing at the HMR locus in yeast.
Genetics. 2011 Feb;187(2):425-39. doi: 10.1534/genetics.110.124099. Epub 2010 Dec 6.

本文引用的文献

1
DNA polymerase epsilon, acetylases and remodellers cooperate to form a specialized chromatin structure at a tRNA insulator.
EMBO J. 2009 Sep 2;28(17):2583-600. doi: 10.1038/emboj.2009.198. Epub 2009 Jul 23.
2
Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions.
PLoS Genet. 2009 May;5(5):e1000478. doi: 10.1371/journal.pgen.1000478. Epub 2009 May 8.
5
Assembling heterochromatin in the appropriate places: A boost is needed.
J Cell Physiol. 2009 Jun;219(3):525-8. doi: 10.1002/jcp.21749.
7
Silent but not static: accelerated base-pair substitution in silenced chromatin of budding yeasts.
PLoS Genet. 2008 Nov;4(11):e1000247. doi: 10.1371/journal.pgen.1000247. Epub 2008 Nov 7.
8
A silencer promotes the assembly of silenced chromatin independently of recruitment.
Mol Cell Biol. 2009 Jan;29(1):43-56. doi: 10.1128/MCB.00983-08. Epub 2008 Oct 27.
9
TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae.
Eukaryot Cell. 2008 Dec;7(12):2078-86. doi: 10.1128/EC.00128-08. Epub 2008 Oct 10.
10
Long-range communication between the silencers of HMR.
Mol Cell Biol. 2008 Mar;28(6):1924-35. doi: 10.1128/MCB.01647-07. Epub 2008 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验