School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
J Chem Ecol. 2010 Mar;36(3):286-97. doi: 10.1007/s10886-010-9757-7. Epub 2010 Feb 23.
Salicylate-containing phenolic glycosides (PGs) are abundant and often play a dominant role in plant-herbivore interactions of Populus and Salix species (family Salicaceae), but the biosynthetic pathway to PGs remains unclear. Cinnamic acid (CA) is thought to be a precursor of the salicyl moiety of PGs. However, the origin of the 6-hydroxy-2-cyclohexen-on-oyl (HCH) moiety found in certain PGs, such as salicortin, is not known. HCH is of interest because it confers toxicity and antifeedant properties against herbivores. We incubated Populus nigra leaf tissue with stable isotope-labeled CA, benzoates, and salicylates, and measured isotopic incorporation levels into both salicin, the simplest PG, and salicortin. Labeling of salicortin from [13C6]-CA provided the first evidence that HCH, like the salicyl moiety, is a phenylpropanoid derivative. Benzoic acid and benzaldehyde also labeled both salicyl and HCH, while benzyl alcohol labeled only the salicyl moiety in salicortin. Co-administration of unlabeled benzoates with [13C6]-CA confirmed their contribution to the biosynthesis of the salicyl but not the HCH moiety of salicortin. These data suggest that benzoate interconversions may modulate partitioning of phenylpropanoids to salicyl and HCH moieties, and hence toxicity of PGs. Surprisingly, labeled salicyl alcohol and salicylaldehyde were readily converted to salicin, but did not result in labeled salicortin. Co-administration of unlabeled salicylates with labeled CA suggested that salicyl alcohol and salicylaldehyde may have inhibited salicortin biosynthesis. A revised metabolic grid model of PG biosynthesis in Populus is proposed, providing a guide for functional genomic analysis of the PG biosynthetic pathway.
含柳酸盐的酚糖苷(PGs)在杨属和柳属植物与食草动物的相互作用中含量丰富,且通常起着主要作用(杨柳科),但其生物合成途径尚不清楚。肉桂酸(CA)被认为是 PGs 中水杨酸部分的前体。然而,在某些 PGs 中发现的 6-羟基-2-环己烯-1-酮酰基(HCH)部分的来源尚不清楚,例如柳杉醇。HCH 之所以受到关注,是因为它对食草动物具有毒性和拒食作用。我们用稳定同位素标记的 CA、苯甲酸和水杨酸盐孵育了黑柳叶片组织,并测量了同位素掺入到最简单的 PGs 之一水杨苷和柳杉醇中的水平。[13C6]-CA 标记的柳杉醇提供了第一个证据,表明 HCH 与水杨酸部分一样,是苯丙烷衍生物。苯甲酸和苯甲醛也标记了水杨基和 HCH,而苄醇仅标记了柳杉醇中的水杨基部分。用未标记的苯甲酸与[13C6]-CA 共同给药证实了它们对柳杉醇中水杨酸但不是 HCH 部分生物合成的贡献。这些数据表明,苯甲酸的互变可能调节了苯丙烷向水杨酸和 HCH 部分的分配,从而影响了 PGs 的毒性。令人惊讶的是,标记的水杨醇和水杨醛很容易转化为水杨苷,但不会导致标记的柳杉醇。用标记的 CA 与未标记的水杨酸盐共同给药表明,水杨醇和水杨醛可能抑制了柳杉醇的生物合成。提出了一个改良的 PG 生物合成代谢网格模型,为 PG 生物合成途径的功能基因组分析提供了指导。