Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, CB 1180, St. Louis, Missouri 63130, USA.
Environ Sci Technol. 2010 Apr 1;44(7):2728-34. doi: 10.1021/es9031985.
Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance contributes to BES potential losses and, therefore, power losses. Here, we report that adding carbon dioxide (CO(2)) gas to the cathode, which creates a CO(2)/bicarbonate buffered catholyte system, can diminish microbial fuel cell (MFC) pH imbalances in contrast to the CO(2)/carbonate buffered catholyte system by Torres, Lee, and Rittmann [Environ. Sci. Technol. 2008, 42, 8773]. We operated an air-cathode and liquid-cathode MFC side-by-side. For the air-cathode MFC, CO(2) addition resulted in a stable catholyte film pH of 6.61 +/- 0.12 and a 152% increase in steady-state power density. By adding CO(2) to the liquid-cathode system, we sustained a steady catholyte pH (pH = 5.94 +/- 0.02) and a low pH imbalance (DeltapH = 0.65 +/- 0.18) over a 2-week period without external salt buffer addition. By migrating bicarbonate ions from the cathode to the anode (with an anion-exchange membrane), we increased the anolyte pH (DeltapH = 0.39 +/- 0.31), total alkalinity (494 +/- 6 to 582 +/- 6 as mg CaCO(3)/L), and conductivity (1.53 +/- 0.49 to 2.16 +/- 0.03 mS/cm) relative to the feed properties. We also verified with a phosphate-buffered MFC that our reaction rates were limited mainly by the reactor configuration rather than limitations due to the bicarbonate buffer.
生物电化学系统(BES)的 pH 失衡是由于阳极质子生成氧化反应和阴极氢氧根离子生成还原反应引起的。到目前为止,由于 pH 失衡会导致 BES 潜在损失,从而导致功率损失,因此工作人员添加了不可持续的缓冲液来降低阳极和阴极之间的 pH 差异。在这里,我们报告说,向阴极添加二氧化碳(CO(2))气体可以创建 CO(2)/碳酸氢盐缓冲阴极电解液系统,与 Torres、Lee 和 Rittmann [Environ. Sci. Technol. 2008, 42, 8773] 报道的 CO(2)/碳酸盐缓冲阴极电解液系统相比,可以减少微生物燃料电池(MFC)的 pH 失衡。我们并排运行了一个空气阴极和液体阴极 MFC。对于空气阴极 MFC,添加 CO(2)导致稳定的阴极电解液膜 pH 值为 6.61 +/- 0.12,并且稳态功率密度增加了 152%。通过向液体阴极系统添加 CO(2),我们在没有外部盐缓冲添加的情况下,在 2 周的时间内维持稳定的阴极电解液 pH 值(pH = 5.94 +/- 0.02)和低 pH 失衡(DeltapH = 0.65 +/- 0.18)。通过将碳酸氢根离子从阴极迁移到阳极(使用阴离子交换膜),我们增加了阳极电解液 pH 值(DeltapH = 0.39 +/- 0.31)、总碱度(494 +/- 6 至 582 +/- 6 作为 mg CaCO(3)/L)和电导率(1.53 +/- 0.49 至 2.16 +/- 0.03 mS/cm)与进料特性相比。我们还用磷酸盐缓冲的 MFC 验证了我们的反应速率主要受到反应器配置的限制,而不是碳酸氢盐缓冲的限制。