Suppr超能文献

阴极 OH(-) 传输在微生物燃料电池中的重要性。

Importance of OH(-) transport from cathodes in microbial fuel cells.

机构信息

Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ 85287, USA.

出版信息

ChemSusChem. 2012 Jun;5(6):1071-9. doi: 10.1002/cssc.201100777. Epub 2012 May 21.

Abstract

Cathodic limitation in microbial fuel cells (MFCs) is considered an important hurdle towards practical application as a bioenergy technology. The oxygen reduction reaction (ORR) needs to occur in MFCs under significantly different conditions compared to chemical fuel cells, including a neutral pH. The common reason cited for cathodic limitation is the difficulty in providing protons to the catalyst sites. Here, we show that it is not the availability of protons, but the transport of OH(-) from the catalyst layer to the bulk liquid that largely governs cathodic potential losses. OH(-) is a product of an ORR mechanism that has not been considered dominant before. The accumulation of OH(-) at the catalyst sites results in an increase in the local cathode pH, resulting in Nernstian concentration losses. For Pt-based gas-diffusion cathodes, using polarization curves developed in unbuffered and buffered solutions, we quantified this loss to be >0.3 V at a current density of 10 Am(-2) . We show that this loss can be partially overcome by replacing the Nafion binder used in the cathode catalyst layer with an anion-conducting binder and by providing additional buffer to the cathode catalyst directly in the form of CO(2) , which results in enhanced OH(-) transport. Our results provide a comprehensive analysis of cathodic limitations in MFCs and should allow researchers to develop and select materials for the construction of MFC cathodes and identify operational conditions that will help minimize Nernstian concentration losses due to pH gradients.

摘要

在微生物燃料电池 (MFC) 中,阴极限制被认为是朝着生物能源技术实际应用的重要障碍。与化学燃料电池相比,MFC 中的氧还原反应 (ORR) 需要在显著不同的条件下发生,包括中性 pH 值。阴极限制的常见原因是难以将质子提供给催化剂位点。在这里,我们表明,限制阴极的主要因素不是质子的可用性,而是 OH(-)从催化剂层向主体液体的传输。OH(-)是一种以前未被认为占主导地位的 ORR 机制的产物。OH(-)在催化剂位点的积累导致局部阴极 pH 值升高,导致能斯特浓度损失。对于基于 Pt 的气体扩散阴极,我们使用在未缓冲和缓冲溶液中开发的极化曲线,在电流密度为 10 Am(-2) 时,定量计算出这种损失>0.3 V。我们表明,通过用阴离子传导性粘结剂替代阴极催化剂层中的 Nafion 粘结剂,并以 CO(2) 的形式直接向阴极催化剂提供额外的缓冲剂,可以部分克服这种损失,从而改善 OH(-)的传输。我们的结果提供了对 MFC 中阴极限制的全面分析,应该允许研究人员为 MFC 阴极的构建开发和选择材料,并确定有助于最小化由于 pH 梯度引起的能斯特浓度损失的操作条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验