Suppr超能文献

反向散射和散射体大小估计的数据获取和处理参数的权衡。

Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.

机构信息

Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(2):340-52. doi: 10.1109/TUFFC.2010.1414.

Abstract

By analyzing backscattered echo signal power spectra and thereby obtaining backscatter coefficient vs. frequency data, the size of subresolution scatterers contributing to echo signals can be estimated. Here we investigate trade-offs in data acquisition and processing parameters for reference phantom-based backscatter and scatterer size estimations. RF echo data from a tissue-mimicking test phantom were acquired using a clinical scanner equipped with linear array transducers. One array has a nominal frequency bandwidth of 5 to 13 MHz and the other 4 to 9 MHz. Comparison of spectral estimation methods showed that the Welch method provided spectra yielding more accurate and precise backscatter coefficient and scatterer size estimations than spectra computed by applying rectangular, Hanning, or Hamming windows and much reduced computational load than if using the multitaper method. For small echo signal data block sizes, moderate improvements in scatterer size estimations were obtained using a multitaper method, but this significantly increases the computational burden. It is critical to average power spectra from lateral A-lines for the improvement of scatterer size estimation. Averaging approximately 10 independent A-lines laterally with an axial window length 10 times the center frequency wavelength optimized trade-offs between spatial resolution and the variance of scatterer size estimates. Applying the concept of a time-bandwidth product, this suggests using analysis blocks that contain at least 30 independent samples of the echo signal. The estimation accuracy and precision depend on the ka range where k is the wave number and a is the effective scatterer size. This introduces a region-of-interest depth dependency to the accuracy and precision because of preferential attenuation of higher frequency sound waves in tissuelike media. With the 5 to 13 MHz, transducer ka ranged from 0.5 to 1.6 for scatterers in the test phantom, which is a favorable range, and the accuracy and precision of scatterer size estimations were both within approximately 5% using optimal analysis block dimensions. When the 4- to 9-MHz transducer was used, the ka value ranged from 0.3 to 0.8 to 1.1 for the experimental conditions, and the accuracy and precision were found to be approximately 10% and 10% to 25%, respectively. Although the experiments were done with 2 specific models of transducers on the test phantom, the results can be generalized to similar clinical arrays available from a variety of manufacturers and/or for different size of scatterers with similar ka range.

摘要

通过分析反向散射回波信号的功率谱,从而获得反向散射系数与频率的数据,可估计产生回波信号的亚分辨散射体的大小。在这里,我们研究了基于参考体模的反向散射和散射体大小估计的数据采集和处理参数的权衡。使用配备线性阵列换能器的临床扫描仪从组织模拟测试体模获取 RF 回波数据。一个阵列的标称频率带宽为 5 至 13 MHz,另一个为 4 至 9 MHz。对谱估计方法的比较表明,与应用矩形、汉宁或汉明窗计算的谱相比,韦尔奇方法提供的谱能够更准确、更精确地估计反向散射系数和散射体大小,并且计算负载比应用多音带方法小得多。对于小的回波信号数据块大小,使用多音带方法可以适度提高散射体大小估计的精度,但这会显著增加计算负担。对侧向 A 线的功率谱进行平均对于提高散射体大小估计非常重要。使用轴向窗口长度为中心频率波长 10 倍的方法,平均约 10 个独立的侧向 A 线,可以优化空间分辨率和散射体大小估计方差之间的权衡。应用时宽带积的概念,这表明使用包含至少 30 个回波信号独立样本的分析块。估计的准确性和精度取决于 ka 范围,其中 k 是波数,a 是有效散射体的大小。由于在类组织介质中高频声波的优先衰减,这会给感兴趣区域的深度带来准确性和精度的依赖性。对于测试体模中的散射体,5 至 13 MHz 的换能器 ka 范围为 0.5 至 1.6,这是一个有利的范围,使用最佳分析块尺寸,散射体大小估计的准确性和精度都在大约 5%以内。当使用 4 至 9 MHz 的换能器时,实验条件下的 ka 值范围为 0.3 至 0.8 至 1.1,发现准确性和精度分别约为 10%和 10%至 25%。尽管实验是在测试体模上的两个特定型号的换能器上进行的,但结果可以推广到来自各种制造商的类似临床阵列,或者用于具有相似 ka 范围的不同大小的散射体。

相似文献

1
Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(2):340-52. doi: 10.1109/TUFFC.2010.1414.
2
Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer.
Phys Med Biol. 2008 Aug 7;53(15):4169-83. doi: 10.1088/0031-9155/53/15/011. Epub 2008 Jul 17.
6
Spectral and scatterer-size correlation during angular compounding: simulations and experimental studies.
Ultrason Imaging. 2006 Oct;28(4):230-44. doi: 10.1177/016173460602800403.
7
Quantitative ultrasound estimates from populations of scatterers with continuous size distributions.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Apr;58(4):744-53. doi: 10.1109/TUFFC.2011.1867.
8
Quantitative ultrasound estimates from populations of scatterers with continuous size distributions: effects of the size estimator algorithm.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Sep;59(9):2066-76. doi: 10.1109/TUFFC.2012.2428.
10
Scatterer number density considerations in reference phantom-based attenuation estimation.
Ultrasound Med Biol. 2014 Jul;40(7):1680-96. doi: 10.1016/j.ultrasmedbio.2014.01.022. Epub 2014 Apr 13.

引用本文的文献

1
Clutter-Generating Phantom Material. Part II: Utilization in the Comparison of Conventional and Regularized Ultrasound Attenuation Estimation.
Ultrasound Med Biol. 2025 May;51(5):777-787. doi: 10.1016/j.ultrasmedbio.2025.01.006. Epub 2025 Feb 11.
2
Simulation of ultrasonic scattering from scatterer size distributions using Field II.
J Acoust Soc Am. 2024 Feb 1;155(2):1406-1421. doi: 10.1121/10.0024459.
3
Quantitative Ultrasound: Experimental Implementation.
Adv Exp Med Biol. 2023;1403:29-42. doi: 10.1007/978-3-031-21987-0_3.
4
Quantitative Ultrasound: Scattering Theory.
Adv Exp Med Biol. 2023;1403:19-28. doi: 10.1007/978-3-031-21987-0_2.
5
Quantitative Ultrasound Detects Smooth Muscle Activity at the Cervical Internal Os in Vitro.
Ultrasound Med Biol. 2020 Jan;46(1):149-155. doi: 10.1016/j.ultrasmedbio.2019.08.020. Epub 2019 Oct 24.
6
A Quantitative Ultrasound-Based Multi-Parameter Classifier for Breast Masses.
Ultrasound Med Biol. 2019 Jul;45(7):1603-1616. doi: 10.1016/j.ultrasmedbio.2019.02.025. Epub 2019 Apr 26.
7
Analysis of Coherent and Diffuse Scattering Using a Reference Phantom.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Sep;63(9):1306-20. doi: 10.1109/TUFFC.2016.2547341. Epub 2016 Mar 25.
8
Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Feb;63(2):336-51. doi: 10.1109/TUFFC.2015.2513958. Epub 2016 Jan 8.
9
Toward 3-D Echocardiographic Determination of Regional Myofiber Structure.
Ultrasound Med Biol. 2016 Feb;42(2):607-18. doi: 10.1016/j.ultrasmedbio.2015.09.024. Epub 2015 Nov 14.
10
Mean scatterer spacing estimation using multi-taper coherence.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jun;60(6):1061-73. doi: 10.1109/TUFFC.2013.2670.

本文引用的文献

1
Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer.
Phys Med Biol. 2008 Aug 7;53(15):4169-83. doi: 10.1088/0031-9155/53/15/011. Epub 2008 Jul 17.
2
Relationship of ultrasonic spectral parameters to features of tissue microstructure.
IEEE Trans Ultrason Ferroelectr Freq Control. 1987;34(3):319-29. doi: 10.1109/t-uffc.1987.26950.
3
Optimum displacement for compound image generation in medical ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(4):470-6. doi: 10.1109/58.4184.
4
Tests of backscatter coefficient measurement using broadband pulses.
IEEE Trans Ultrason Ferroelectr Freq Control. 1993;40(5):603-7. doi: 10.1109/58.238114.
5
A frequency domain model for generating B-mode images with array transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(3):690-9. doi: 10.1109/58.764855.
6
Spectral and scatterer-size correlation during angular compounding: simulations and experimental studies.
Ultrason Imaging. 2006 Oct;28(4):230-44. doi: 10.1177/016173460602800403.
7
Attenuation estimation using spectral cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):510-9. doi: 10.1109/tuffc.2007.274.
8
On the statistics of ultrasonic spectral parameters.
Ultrasound Med Biol. 2006 Nov;32(11):1671-85. doi: 10.1016/j.ultrasmedbio.2006.09.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验