Suppr超能文献

基于定量超声的乳腺肿块多参数分类器。

A Quantitative Ultrasound-Based Multi-Parameter Classifier for Breast Masses.

机构信息

Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA; Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.

出版信息

Ultrasound Med Biol. 2019 Jul;45(7):1603-1616. doi: 10.1016/j.ultrasmedbio.2019.02.025. Epub 2019 Apr 26.

Abstract

This manuscript reports preliminary results obtained by combining estimates of two or three (among seven) quantitative ultrasound (QUS) parameters in a model-free, multi-parameter classifier to differentiate breast carcinomas from fibroadenomas (the most common benign solid tumor). Forty-three patients scheduled for core biopsy of a suspicious breast mass were recruited. Radiofrequency echo signal data were acquired using clinical breast ultrasound systems equipped with linear array transducers. The reference phantom method was used to obtain system-independent estimates of the specific attenuation (ATT), the average backscatter coefficients, the effective scatterer diameter (ESD) and an effective scatterer diameter heterogeneity index (ESDHI) over regions of interest within each mass. In addition, the envelope amplitude signal-to-noise ratio (SNR), the Nakagami shape parameter, m, and the maximum collapsed average (maxCA) of the generalized spectrum were also computed. Classification was performed using the minimum Mahalanobis distance to the centroids of the training classes and tested against biopsy results. Classification performance was evaluated with the area under the receiver operating characteristic (ROC) curve. The best performance with a two-parameter classifier used the ESD and ESDHI and resulted in an area under the ROC curve of 0.98 (95% confidence interval [CI]: 0.95-1.00). Classification performance improved with three parameters (ATT, ESD and ESDHI) yielding an area under the ROC curve of 0.999 (0.995-1.000). These results suggest that system-independent QUS parameters, when combined in a model-free classifier, are a promising tool to characterize breast tumors. A larger study is needed to further test this idea.

摘要

本手稿报告了一种初步结果,该结果通过将两种或三种(七种中)定量超声 (QUS) 参数的估计值组合在无模型、多参数分类器中,以区分乳腺癌与纤维腺瘤(最常见的良性实体瘤)。招募了 43 名计划对可疑乳腺肿块进行核心活检的患者。使用配备线性阵列换能器的临床乳腺超声系统获取射频回波信号数据。使用参考体模方法获得系统独立的特定衰减 (ATT)、平均反向散射系数、有效散射体直径 (ESD) 和有效散射体直径异质性指数 (ESDHI) 的估计值,这些参数是在每个肿块的感兴趣区域内获得的。此外,还计算了包络幅度信噪比 (SNR)、Nakagami 形状参数 m 和广义谱的最大塌陷平均值 (maxCA)。使用训练类别的质心的最小马氏距离进行分类,并针对活检结果进行测试。使用接收器操作特性 (ROC) 曲线下的面积评估分类性能。使用 ESD 和 ESDHI 的两参数分类器表现最佳,ROC 曲线下的面积为 0.98(95%置信区间 [CI]:0.95-1.00)。使用三个参数(ATT、ESD 和 ESDHI)可提高分类性能,ROC 曲线下的面积为 0.999(0.995-1.000)。这些结果表明,当在无模型分类器中组合使用系统独立的超声参数时,是一种有前途的工具,可以用于描述乳腺肿瘤。需要更大的研究来进一步验证这一想法。

相似文献

1
A Quantitative Ultrasound-Based Multi-Parameter Classifier for Breast Masses.基于定量超声的乳腺肿块多参数分类器。
Ultrasound Med Biol. 2019 Jul;45(7):1603-1616. doi: 10.1016/j.ultrasmedbio.2019.02.025. Epub 2019 Apr 26.

引用本文的文献

4
Recent Advances in Attenuation Estimation.衰减估计的最新进展
Adv Exp Med Biol. 2023;1403:85-104. doi: 10.1007/978-3-031-21987-0_6.

本文引用的文献

2
Power Spectrum Consistency among Systems and Transducers.系统与换能器之间的功率谱一致性。
Ultrasound Med Biol. 2018 Nov;44(11):2358-2370. doi: 10.1016/j.ultrasmedbio.2018.05.013. Epub 2018 Aug 7.
3
Cancer Statistics, 2017.《2017 年癌症统计》
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
4
Analysis of Coherent and Diffuse Scattering Using a Reference Phantom.使用参考体模分析相干和漫散射。
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Sep;63(9):1306-20. doi: 10.1109/TUFFC.2016.2547341. Epub 2016 Mar 25.
5
Acoustic Properties of Breast Fat.乳腺脂肪的声学特性
J Ultrasound Med. 2015 Nov;34(11):2007-16. doi: 10.7863/ultra.14.07039. Epub 2015 Oct 7.
8
Backscatter coefficient estimation using tapers with gaps.使用带间隙的窗函数估计后向散射系数。
Ultrason Imaging. 2015 Apr;37(2):117-34. doi: 10.1177/0161734614549263. Epub 2014 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验