Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA; Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
Ultrasound Med Biol. 2019 Jul;45(7):1603-1616. doi: 10.1016/j.ultrasmedbio.2019.02.025. Epub 2019 Apr 26.
This manuscript reports preliminary results obtained by combining estimates of two or three (among seven) quantitative ultrasound (QUS) parameters in a model-free, multi-parameter classifier to differentiate breast carcinomas from fibroadenomas (the most common benign solid tumor). Forty-three patients scheduled for core biopsy of a suspicious breast mass were recruited. Radiofrequency echo signal data were acquired using clinical breast ultrasound systems equipped with linear array transducers. The reference phantom method was used to obtain system-independent estimates of the specific attenuation (ATT), the average backscatter coefficients, the effective scatterer diameter (ESD) and an effective scatterer diameter heterogeneity index (ESDHI) over regions of interest within each mass. In addition, the envelope amplitude signal-to-noise ratio (SNR), the Nakagami shape parameter, m, and the maximum collapsed average (maxCA) of the generalized spectrum were also computed. Classification was performed using the minimum Mahalanobis distance to the centroids of the training classes and tested against biopsy results. Classification performance was evaluated with the area under the receiver operating characteristic (ROC) curve. The best performance with a two-parameter classifier used the ESD and ESDHI and resulted in an area under the ROC curve of 0.98 (95% confidence interval [CI]: 0.95-1.00). Classification performance improved with three parameters (ATT, ESD and ESDHI) yielding an area under the ROC curve of 0.999 (0.995-1.000). These results suggest that system-independent QUS parameters, when combined in a model-free classifier, are a promising tool to characterize breast tumors. A larger study is needed to further test this idea.
本手稿报告了一种初步结果,该结果通过将两种或三种(七种中)定量超声 (QUS) 参数的估计值组合在无模型、多参数分类器中,以区分乳腺癌与纤维腺瘤(最常见的良性实体瘤)。招募了 43 名计划对可疑乳腺肿块进行核心活检的患者。使用配备线性阵列换能器的临床乳腺超声系统获取射频回波信号数据。使用参考体模方法获得系统独立的特定衰减 (ATT)、平均反向散射系数、有效散射体直径 (ESD) 和有效散射体直径异质性指数 (ESDHI) 的估计值,这些参数是在每个肿块的感兴趣区域内获得的。此外,还计算了包络幅度信噪比 (SNR)、Nakagami 形状参数 m 和广义谱的最大塌陷平均值 (maxCA)。使用训练类别的质心的最小马氏距离进行分类,并针对活检结果进行测试。使用接收器操作特性 (ROC) 曲线下的面积评估分类性能。使用 ESD 和 ESDHI 的两参数分类器表现最佳,ROC 曲线下的面积为 0.98(95%置信区间 [CI]:0.95-1.00)。使用三个参数(ATT、ESD 和 ESDHI)可提高分类性能,ROC 曲线下的面积为 0.999(0.995-1.000)。这些结果表明,当在无模型分类器中组合使用系统独立的超声参数时,是一种有前途的工具,可以用于描述乳腺肿瘤。需要更大的研究来进一步验证这一想法。