Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
Biostatistics. 2010 Jul;11(3):519-32. doi: 10.1093/biostatistics/kxq009. Epub 2010 Feb 23.
We propose a formal statistical inference framework for the evaluation of the penetrance of a rare genetic mutation using family data generated under a kin-cohort type of design, where phenotype and genotype information from first-degree relatives (sibs and/or offspring) of case probands carrying the targeted mutation are collected. Our approach is built upon a likelihood model with some minor assumptions, and it can be used for age-dependent penetrance estimation that permits adjustment for covariates. Furthermore, the derived likelihood allows unobserved risk factors that are correlated within family members. The validity of the approach is confirmed by simulation studies. We apply the proposed approach to estimating the age-dependent cancer risk among carriers of the MSH2 or MLH1 mutation.
我们提出了一个正式的统计推断框架,用于评估在基于亲缘-队列设计的情况下,使用携带目标突变的病例先证者的一级亲属(兄弟姐妹和/或子女)的表型和基因型信息,来评估罕见基因突变的外显率。我们的方法建立在一个带有一些小假设的似然模型基础上,可用于年龄相关的外显率估计,允许对协变量进行调整。此外,推导出的似然函数允许存在与家庭成员内相关的未观察到的风险因素。该方法的有效性通过模拟研究得到了验证。我们将所提出的方法应用于估计 MSH2 或 MLH1 突变携带者的癌症风险随年龄的变化。