Laboratoire Optique et Biosciences, Inserm U696, CNRS 7645, Ecole Polytechnique, Palaiseau, France.
PLoS One. 2010 Feb 22;5(2):e9243. doi: 10.1371/journal.pone.0009243.
Accurate response to external directional signals is essential for many physiological functions such as chemotaxis or axonal guidance. It relies on the detection and amplification of gradients of chemical cues, which, in eukaryotic cells, involves the asymmetric relocalization of signaling molecules. How molecular events coordinate to induce a polarity at the cell level remains however poorly understood, particularly for nerve chemotaxis. Here, we propose a model, inspired by single-molecule experiments, for the membrane dynamics of GABA chemoreceptors in nerve growth cones (GCs) during directional sensing. In our model, transient interactions between the receptors and the microtubules, coupled to GABA-induced signaling, provide a positive-feedback loop that leads to redistribution of the receptors towards the gradient source. Using numerical simulations with parameters derived from experiments, we find that the kinetics of polarization and the steady-state polarized distribution of GABA receptors are in remarkable agreement with experimental observations. Furthermore, we make predictions on the properties of the GC seen as a sensing, amplification and filtering module. In particular, the growth cone acts as a low-pass filter with a time constant approximately 10 minutes determined by the Brownian diffusion of chemoreceptors in the membrane. This filtering makes the gradient amplification resistant to rapid fluctuations of the external signals, a beneficial feature to enhance the accuracy of neuronal wiring. Since the model is based on minimal assumptions on the receptor/cytoskeleton interactions, its validity extends to polarity formation beyond the case of GABA gradient sensing. Altogether, it constitutes an original positive-feedback mechanism by which cells can dynamically adapt their internal organization to external signals.
对外界定向信号的准确响应对于许多生理功能至关重要,例如趋化性或轴突导向。它依赖于化学线索梯度的检测和放大,而在真核细胞中,这涉及到信号分子的不对称重定位。然而,分子事件如何协调在细胞水平上诱导极性仍然知之甚少,特别是对于神经趋化性。在这里,我们提出了一个模型,该模型受单细胞实验的启发,用于定向感应过程中 GABA 化学感受器在神经生长锥 (GC) 中的膜动力学。在我们的模型中,受体与微管之间的短暂相互作用,与 GABA 诱导的信号转导相结合,提供了一个正反馈回路,导致受体重新分布到梯度源。使用从实验中得出的参数进行数值模拟,我们发现极化的动力学和 GABA 受体的稳态极化分布与实验观察结果非常吻合。此外,我们对作为感应、放大和滤波模块的 GC 的特性进行了预测。特别是,生长锥作为一个低通滤波器,其时间常数约为 10 分钟,由膜中化学感受器的布朗扩散决定。这种滤波使得梯度放大对外部信号的快速波动具有抗性,这是增强神经元布线准确性的有益特征。由于该模型基于对受体/细胞骨架相互作用的最小假设,因此其有效性扩展到 GABA 梯度感应以外的极性形成。总之,它构成了细胞可以动态适应其内部组织以响应外部信号的原始正反馈机制。