Suppr超能文献

基于中国土壤元素水平预测鼻咽癌死亡率。

The prediction of nasopharyngeal carcinoma mortality based on soil element levels in China.

机构信息

Department of Chemistry and Chemical Engineering, Yibin University, Yibin 644007, People's Republic of China.

出版信息

Biol Trace Elem Res. 2010 Dec;138(1-3):139-47. doi: 10.1007/s12011-010-8632-2. Epub 2010 Feb 24.

Abstract

The relationship between the mortality of nasopharyngeal carcinoma (NPC) and soil trace elements of 29 regions of China was investigated. A total of 29 elements (i.e., Mn, Na, K, Mg, Ca, Sr, Ba, Hg, Pb, Se, In, Yb, Lu, Th, U, Sn, Ti, Zr, Hf, Bi, Ta, Te, Br, I, As, Cr, Cu, Fe, and Zn) were considered. A hybrid strategy called genetic algorithm-partial least squares was used to screen out important elements. As a result, only six elements, i.e., Mn, Ti, Mg, K, Na, and I, were picked out, based on which, a PLS model containing two latent variables exhibited the best performance. According to whether the mortality is larger than 2/100,000 (2 × 10(-5)), all the 29 regions were divided into the low-mortality group with 23 regions and the high-mortality group with six regions. Based on the optimal PLS model, all high-mortality regions were successfully classified while only two low-mortality regions were misclassified, i.e., an accuracy of 93%, implying that the selected six elements are effective and successful for predicting the NPC mortality of a region.

摘要

研究了中国 29 个地区鼻咽癌(NPC)死亡率与土壤微量元素之间的关系。共考虑了 29 种元素(即 Mn、Na、K、Mg、Ca、Sr、Ba、Hg、Pb、Se、In、Yb、Lu、Th、U、Sn、Ti、Zr、Hf、Bi、Ta、Te、Br、I、As、Cr、Cu、Fe 和 Zn)。采用遗传算法-偏最小二乘法的混合策略对重要元素进行筛选。结果表明,只有 Mn、Ti、Mg、K、Na 和 I 这六种元素被筛选出来,基于这些元素,包含两个潜在变量的 PLS 模型表现出了最佳性能。根据死亡率是否大于 2/100000(2×10(-5)),将 29 个地区全部分为死亡率较低的 23 个地区和死亡率较高的 6 个地区。基于最优 PLS 模型,成功地对所有高死亡率地区进行了分类,而仅有两个低死亡率地区被错误分类,即准确率为 93%,这意味着所选的六种元素对于预测一个地区的 NPC 死亡率是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验