Suppr超能文献

混合人工蜂群优化和量子进化算法求解连续优化问题

A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems.

机构信息

National Key Laboratory of Science and Technology on Holistic Control, School of Automation Science and Electrical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing, 100191, PR China.

出版信息

Int J Neural Syst. 2010 Feb;20(1):39-50. doi: 10.1142/S012906571000222X.

Abstract

In this paper, a novel hybrid Artificial Bee Colony (ABC) and Quantum Evolutionary Algorithm (QEA) is proposed for solving continuous optimization problems. ABC is adopted to increase the local search capacity as well as the randomness of the populations. In this way, the improved QEA can jump out of the premature convergence and find the optimal value. To show the performance of our proposed hybrid QEA with ABC, a number of experiments are carried out on a set of well-known Benchmark continuous optimization problems and the related results are compared with two other QEAs: the QEA with classical crossover operation, and the QEA with 2-crossover strategy. The experimental comparison results demonstrate that the proposed hybrid ABC and QEA approach is feasible and effective in solving complex continuous optimization problems.

摘要

在本文中,提出了一种新颖的混合人工蜂群(ABC)和量子进化算法(QEA),用于解决连续优化问题。ABC 被用来提高种群的局部搜索能力和随机性。通过这种方式,改进的 QEA 可以跳出过早收敛并找到最优值。为了展示我们提出的混合 QEA 与 ABC 的性能,在一组著名的基准连续优化问题上进行了大量实验,并将相关结果与另外两种 QEA 进行了比较:具有经典交叉操作的 QEA 和具有 2-交叉策略的 QEA。实验比较结果表明,所提出的混合 ABC 和 QEA 方法在解决复杂连续优化问题时是可行和有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验