Xidian University, Xi'an 710071, China.
IEEE Trans Cybern. 2013 Jun;43(3):1011-24. doi: 10.1109/TSMCB.2012.2222373. Epub 2012 Oct 18.
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions.
人工蜂群(ABC)算法是一种相对较新的优化技术,已被证明具有与其他基于种群的算法竞争的能力。然而,ABC 在其解决方案搜索方程方面存在不足,该方程擅长探索但在开发方面表现不佳。为了解决这个问题,我们首先提出了一种名为 CABC 的改进 ABC 方法,其中应用了修改后的搜索方程来生成候选解决方案,以提高 ABC 的搜索能力。此外,我们使用正交实验设计(OED)为变体 ABC 形成正交学习(OL)策略,以从搜索经验中发现更多有用的信息。由于 OED 具有良好的特性,即可以通过采样少量具有代表性的组合进行测试,因此 OL 策略可以构造出更有前途和更有效的候选解决方案。在本文中,OL 策略应用于三个版本的 ABC,即标准 ABC、全局最佳引导 ABC(GABC)和 CABC,分别产生 OABC、OGABC 和 OCABC。在一组 22 个基准函数上的实验结果证明了改进的搜索方程和 OL 策略的有效性和效率。与其他一些 ABC 和一些最先进的算法的比较表明,所提出的算法显著提高了 ABC 的性能。此外,OCABC 在几乎所有测试函数上都提供了所有竞争者中最高的解决方案质量、最快的全局收敛速度和最强的鲁棒性。