Suppr超能文献

基于概率推理的新一代同源性搜索工具。

A new generation of homology search tools based on probabilistic inference.

作者信息

Eddy Sean R

机构信息

Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.

出版信息

Genome Inform. 2009 Oct;23(1):205-11.

Abstract

Many theoretical advances have been made in applying probabilistic inference methods to improve the power of sequence homology searches, yet the BLAST suite of programs is still the workhorse for most of the field. The main reason for this is practical: BLAST's programs are about 100-fold faster than the fastest competing implementations of probabilistic inference methods. I describe recent work on the HMMER software suite for protein sequence analysis, which implements probabilistic inference using profile hidden Markov models. Our aim in HMMER3 is to achieve BLAST's speed while further improving the power of probabilistic inference based methods. HMMER3 implements a new probabilistic model of local sequence alignment and a new heuristic acceleration algorithm. Combined with efficient vector-parallel implementations on modern processors, these improvements synergize. HMMER3 uses more powerful log-odds likelihood scores (scores summed over alignment uncertainty, rather than scoring a single optimal alignment); it calculates accurate expectation values (E-values) for those scores without simulation using a generalization of Karlin/Altschul theory; it computes posterior distributions over the ensemble of possible alignments and returns posterior probabilities (confidences) in each aligned residue; and it does all this at an overall speed comparable to BLAST. The HMMER project aims to usher in a new generation of more powerful homology search tools based on probabilistic inference methods.

摘要

在应用概率推理方法以提高序列同源性搜索能力方面已经取得了许多理论进展,然而BLAST程序套件仍然是该领域大多数工作的主力。主要原因是实用性:BLAST程序的速度比概率推理方法最快的竞争实现快约100倍。我描述了用于蛋白质序列分析的HMMER软件套件的最新工作,该套件使用轮廓隐马尔可夫模型实现概率推理。我们在HMMER3中的目标是在进一步提高基于概率推理方法能力的同时达到BLAST的速度。HMMER3实现了一种新的局部序列比对概率模型和一种新的启发式加速算法。结合现代处理器上高效的向量并行实现,这些改进相互协同。HMMER3使用更强大的对数似然得分(得分是在比对不确定性上求和,而不是对单个最优比对进行评分);它无需模拟即可使用Karlin/Altschul理论的推广为这些得分计算准确的期望值(E值);它计算所有可能比对集合上的后验分布,并返回每个比对残基的后验概率(置信度);而且它以与BLAST相当的整体速度完成所有这些操作。HMMER项目旨在引入基于概率推理方法的新一代更强大的同源性搜索工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验