Theoretical Chemistry, Chemical Centre, P.O. Box 124, S-221 00 Lund, Sweden.
Langmuir. 2010 Apr 6;26(7):4555-8. doi: 10.1021/la904769x.
We investigate the Derjaguin approximation by explicitly determining the interactions between two spherical colloids using density functional theory solved in cylindrical coordinates. The colloids are composed of close-packed Lennard-Jones particles. The solvent particles are also modeled via Lennard-Jones interactions. Cross interactions are assumed to follow the commonly used Lorentz-Berthelot (LB) mixing rule. We demonstrate that this system may display a net repulsive interaction across a substantial separation range. This contradicts the Hamaker-Lifshitz theory, which predicts attractions between identical polarizable particles immersed in a polarizable medium. The source of this repulsion is traced to the LB mixing rule. Surprisingly, we also observe nonmonotonic convergences to the Derjaguin limit. This behavior is best understood by decomposing the total interaction between the colloids into separate contributions. With increasing colloid size, each of these contributions approach the Derjaguin limit in a monotonic manner, but their different rates of convergence mean that their sum may display nonmonotonic behavior.
我们通过在圆柱坐标系中求解密度泛函理论,明确确定两个球形胶体之间的相互作用,从而研究了德加古因近似。胶体由紧密堆积的 Lennard-Jones 粒子组成。溶剂粒子也通过 Lennard-Jones 相互作用进行建模。交叉相互作用假定遵循常用的 Lorentz-Berthelot (LB)混合规则。我们证明,在相当大的分离范围内,该系统可能表现出净排斥相互作用。这与 Hamaker-Lifshitz 理论相矛盾,后者预测在可极化介质中浸泡的相同可极化粒子之间存在吸引力。这种排斥的来源可以追溯到 LB 混合规则。令人惊讶的是,我们还观察到非单调收敛到德加古因极限。通过将胶体之间的总相互作用分解为单独的贡献,可以最好地理解这种行为。随着胶体尺寸的增加,这些贡献中的每一个都以单调方式接近德加古因极限,但它们收敛速度的不同意味着它们的总和可能表现出非单调行为。