Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland.
J Chem Theory Comput. 2023 Apr 11;19(7):2048-2063. doi: 10.1021/acs.jctc.2c01170. Epub 2023 Mar 15.
We recently introduced the CombiFF scheme [Oliveira et al., . , , 7525], an approach for the automated refinement of force-field parameters against experimental condensed-phase data for large compound families. Using this scheme, once the time-consuming task of target-data selection and curation has been performed, the force-field optimization itself is both straightforward and fast. As a result, CombiFF provides an ideal framework for evaluating the influence of functional-form decisions on the accuracy of a force field at an optimal level of parametrization. We already used this approach to assess the effect of using an all-atom representation compared to united-atom representations in the force field [Oliveira et al., . , , 6757]. Here, CombiFF is applied to assess the effect of three Lennard-Jones combination rules, geometric-mean (GM), Lorentz-Berthelot (LB), or Waldman-Hagler (WH), on the simulated properties of organic liquids. The comparison is performed in terms of the experimental liquid density ρ, vaporization enthalpy Δ, surface-tension coefficient γ, static relative dielectric permittivity ϵ, and self-diffusion coefficient . The calibrations of the three force-field variants are carried out independently against 2044 experimental values for ρ, and Δ concerning 1516 compounds. The resulting root-mean-square deviations from experiment are 30.0, 26.9, and 36.7 kg m for ρ and 2.8, 2.8, and 2.9 kJ mol for Δ, when applying the GM, LB, and WH combination rules, respectively. In terms of these (and the other) properties, the three combination rules perform comparatively well, with the GM and LB results being more similar to each other and slightly more accurate compared to experiment. In contrast, the use of distinct combination rules for the parameter calibration and property calculation leads to much larger errors.
我们最近引入了 CombiFF 方案[Oliveira 等人,,,,7525],这是一种针对大型化合物家族的实验凝聚相数据自动细化力场参数的方法。使用该方案,一旦完成了目标数据选择和整理的耗时任务,力场优化本身既简单又快速。因此,CombiFF 为评估力场中功能形式决策对参数化最佳水平下力场准确性的影响提供了理想的框架。我们已经使用这种方法来评估在力场中使用全原子表示与使用统一原子表示相比的影响[Oliveira 等人,,,,6757]。在这里,CombiFF 用于评估三种 Lennard-Jones 组合规则,即几何平均(GM)、Lorentz-Berthelot(LB)或 Waldman-Hagler(WH),对有机液体模拟性质的影响。比较是根据实验液体密度 ρ、汽化焓 Δ、表面张力系数 γ、静态相对介电常数 ϵ 和自扩散系数 进行的。三种力场变体的校准是独立进行的,针对 2044 个 ρ 和 1516 个化合物的实验值进行了校准。当应用 GM、LB 和 WH 组合规则时,从实验得到的均方根偏差分别为 ρ 的 30.0、26.9 和 36.7 kg m 和 Δ 的 2.8、2.8 和 2.9 kJ mol。就这些(和其他)性质而言,这三种组合规则表现相当好,GM 和 LB 的结果彼此更相似,与实验相比略为准确。相比之下,在参数校准和性质计算中使用不同的组合规则会导致更大的误差。