Suppr超能文献

估算食指肌肉的体内被动力:探索模型参数。

Estimating in vivo passive forces of the index finger muscles: Exploring model parameters.

机构信息

Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

J Biomech. 2010 May 7;43(7):1358-63. doi: 10.1016/j.jbiomech.2010.01.014. Epub 2010 Feb 23.

Abstract

We compared predicted passive finger joint torques from a biomechanical model that includes the exponential passive muscle force-length relationship documented in the literature with finger joint torques estimated from measures in ten adult volunteers. The estimated finger joint torques were calculated from measured right index fingertip force, joint postures, and anthropometry across 18 finger and wrist postures with the forearm muscles relaxed. The biomechanical model predicting passive finger joint torques included three extrinsic and three intrinsic finger muscles. The values for the predicted passive joint torques were much larger than the values calculated from the fingertip force and posture measures with an average RMS error of 7.6Ncm. Sensitivity analysis indicated that the predicted joint torques were most sensitive to passive force-length model parameters compared to anthropometric and postural parameters. Using Monte Carlo simulation, we determined a new set of values for the passive force-length model parameters that reduced the differences between the joint torques calculated from the two methods to an average RMS value of 0.5Ncm, a 94% average improvement of error from the torques predicted using the existing data. These new parameter values did vary across individuals; however, using an average set for the parameter values across subjects still reduced the average RMS difference to 0.8Ncm. These new parameters may improve dynamic modeling of the finger during sub-maximal force activities and are based on in vivo data rather than traditional in vitro data.

摘要

我们将包括文献中记录的指数型被动肌肉力-长度关系的生物力学模型预测的被动指关节扭矩与 10 名成年志愿者测量的指关节扭矩进行了比较。在 18 个手指和手腕姿势下,使用测量的右手食指指尖力、关节姿势和人体测量学,前臂肌肉放松,计算出估计的指关节扭矩。预测被动指关节扭矩的生物力学模型包括三个外在和三个内在手指肌肉。预测的被动关节扭矩值比从指尖力和姿势测量值计算出的扭矩值大得多,平均 RMS 误差为 7.6Ncm。敏感性分析表明,与人体测量学和姿势参数相比,预测关节扭矩对被动力-长度模型参数最敏感。使用蒙特卡罗模拟,我们确定了一组新的被动力-长度模型参数值,将两种方法计算的关节扭矩之间的差异减少到平均 RMS 值为 0.5Ncm,与使用现有数据预测的扭矩相比,误差平均提高了 94%。这些新的参数值确实因人而异;然而,在受试者之间使用参数值的平均值仍然将平均 RMS 差异降低到 0.8Ncm。这些新参数可能会改善手指在亚最大力活动期间的动态建模,并且基于体内数据而不是传统的体外数据。

相似文献

3
Impact of finger posture on mapping from muscle activation to joint torque.手指姿势对从肌肉激活到关节扭矩映射的影响。
Clin Biomech (Bristol). 2006 May;21(4):361-9. doi: 10.1016/j.clinbiomech.2005.11.005. Epub 2006 Jan 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验