Suppr超能文献

将外在手指肌肉的长度依赖性被动力量产生肌肉特性纳入手腕和手指生物力学肌肉骨骼模型。

Incorporating the length-dependent passive-force generating muscle properties of the extrinsic finger muscles into a wrist and finger biomechanical musculoskeletal model.

作者信息

Binder-Markey Benjamin I, Murray Wendy M

机构信息

Dept. of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Dept. of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Shirley Ryan AbilityLab (formerly Rehabilitation Institute of Chicago), Chicago, IL, USA.

Dept. of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Dept. of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Shirley Ryan AbilityLab (formerly Rehabilitation Institute of Chicago), Chicago, IL, USA; Edward Hines Jr., VA Hospital, Hines, IL, USA; Dept. of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA.

出版信息

J Biomech. 2017 Aug 16;61:250-257. doi: 10.1016/j.jbiomech.2017.06.026. Epub 2017 Jun 21.

Abstract

Dynamic movement trajectories of low mass systems have been shown to be predominantly influenced by passive viscoelastic joint forces and torques compared to momentum and inertia. The hand is comprised of 27smallmass segments. Because of the influence of the extrinsic finger muscles, the passive torques about each finger joint become a complex function dependent on the posture of multiple joints of the distal upper limb. However, biomechanical models implemented for the dynamic simulation of hand movements generally don't extend proximally to include the wrist and distal upper limb. Thus, they cannot accurately represent these complex passive torques. The purpose of this short communication is to both describe a method to incorporate the length-dependent passive properties of the extrinsic index finger muscles into a biomechanical model of the upper limb and to demonstrate their influence on combined movement of the wrist and fingers. Leveraging a unique set of experimental data, that describes the net passive torque contributed by the extrinsic finger muscles about the metacarpophalangeal joint of the index finger as a function of both metacarpophalangeal and wrist postures, we simulated the length-dependent passive properties of the extrinsic finger muscles. Dynamic forward simulations demonstrate that a model including these properties passively exhibits coordinated movement between the wrist and finger joints, mimicking tenodesis, a behavior that is absent when the length-dependent properties are removed. This work emphasizes the importance of incorporating the length-dependent properties of the extrinsic finger muscles into biomechanical models to study healthy and impaired hand movements.

摘要

与动量和惯性相比,低质量系统的动态运动轨迹已被证明主要受被动粘弹性关节力和扭矩的影响。手由27个小质量节段组成。由于外在手指肌肉的影响,每个手指关节周围的被动扭矩成为一个复杂的函数,取决于上肢远端多个关节的姿势。然而,用于手部运动动态模拟的生物力学模型通常不会向近端扩展以包括手腕和上肢远端。因此,它们无法准确表示这些复杂的被动扭矩。本简短通讯的目的是描述一种将外在食指肌肉的长度依赖性被动特性纳入上肢生物力学模型的方法,并展示它们对手腕和手指联合运动的影响。利用一组独特的实验数据,该数据将外在手指肌肉在食指掌指关节周围产生的净被动扭矩描述为掌指关节和手腕姿势的函数,我们模拟了外在手指肌肉的长度依赖性被动特性。动态正向模拟表明,包含这些特性的模型会被动地展现手腕和手指关节之间的协调运动,模仿了肌腱固定术,而去除长度依赖性特性时这种行为就不存在了。这项工作强调了将外在手指肌肉的长度依赖性特性纳入生物力学模型以研究健康和受损手部运动的重要性。

相似文献

2
Contribution of the extrinsic and intrinsic hand muscles to the moments in finger joints.
Clin Biomech (Bristol). 2000 Mar;15(3):203-11. doi: 10.1016/s0268-0033(99)00058-3.
3
Extrinsic flexor muscles generate concurrent flexion of all three finger joints.
J Biomech. 2002 Dec;35(12):1581-9. doi: 10.1016/s0021-9290(02)00229-4.
4
Activation of intrinsic and extrinsic finger muscles in relation to the fingertip force vector.
Exp Brain Res. 2002 Sep;146(2):197-204. doi: 10.1007/s00221-002-1177-7. Epub 2002 Jul 18.
5
Estimating in vivo passive forces of the index finger muscles: Exploring model parameters.
J Biomech. 2010 May 7;43(7):1358-63. doi: 10.1016/j.jbiomech.2010.01.014. Epub 2010 Feb 23.
6
Force-Length Relationship Modeling of Wrist and Finger Flexor Muscles.
Med Sci Sports Exerc. 2018 Nov;50(11):2311-2321. doi: 10.1249/MSS.0000000000001690.
7
Impact of finger posture on mapping from muscle activation to joint torque.
Clin Biomech (Bristol). 2006 May;21(4):361-9. doi: 10.1016/j.clinbiomech.2005.11.005. Epub 2006 Jan 6.
8
Maximum finger force prediction using a planar simulation of the middle finger.
Proc Inst Mech Eng H. 1990;204(3):169-78. doi: 10.1243/PIME_PROC_1990_204_251_02.
9
Modulation of finger muscle activation patterns across postures is coordinated across all muscle groups.
J Neurophysiol. 2020 Aug 1;124(2):330-341. doi: 10.1152/jn.00088.2020. Epub 2020 Jun 24.
10
The effect of typing posture on wrist extensor muscle loading.
Hum Factors. 2002 Fall;44(3):392-403. doi: 10.1518/0018720024497655.

引用本文的文献

1
Passive muscle forces in are large but insufficient to support a fly's weight.
bioRxiv. 2025 Aug 2:2025.04.29.651225. doi: 10.1101/2025.04.29.651225.
2
Cosimulation of the index finger extensor apparatus with finite element and musculoskeletal models.
J Biomech. 2023 Aug;157:111725. doi: 10.1016/j.jbiomech.2023.111725. Epub 2023 Jul 13.
3
A Musculoskeletal Model of the Hand and Wrist Capable of Simulating Functional Tasks.
IEEE Trans Biomed Eng. 2023 May;70(5):1424-1435. doi: 10.1109/TBME.2022.3217722. Epub 2023 Apr 20.
4
Simulating finger-tip force using two common contact models: Hunt-Crossley and elastic foundation.
J Biomech. 2021 Apr 15;119:110334. doi: 10.1016/j.jbiomech.2021.110334. Epub 2021 Feb 23.
5
The Biomechanical Basis of the Claw Finger Deformity: A Computational Simulation Study.
J Hand Surg Am. 2019 Sep;44(9):751-761. doi: 10.1016/j.jhsa.2019.05.007. Epub 2019 Jun 24.

本文引用的文献

1
Real-time simulation of hand motion for prosthesis control.
Comput Methods Biomech Biomed Engin. 2017 Apr;20(5):540-549. doi: 10.1080/10255842.2016.1255943. Epub 2016 Nov 20.
2
Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.
Comput Methods Biomech Biomed Engin. 2015;18(13):1445-58. doi: 10.1080/10255842.2014.916698. Epub 2014 Jul 4.
3
Flexing computational muscle: modeling and simulation of musculotendon dynamics.
J Biomech Eng. 2013 Feb;135(2):021005. doi: 10.1115/1.4023390.
4
Muscle-tendon units provide limited contributions to the passive stiffness of the index finger metacarpophalangeal joint.
J Biomech. 2012 Oct 11;45(15):2531-8. doi: 10.1016/j.jbiomech.2012.07.034. Epub 2012 Sep 5.
5
Quantification of hand and forearm muscle forces during a maximal power grip task.
Med Sci Sports Exerc. 2012 Oct;44(10):1906-16. doi: 10.1249/MSS.0b013e31825d9612.
6
Passive elastic properties of the rat ankle.
J Biomech. 2012 Jun 1;45(9):1728-32. doi: 10.1016/j.jbiomech.2012.03.017. Epub 2012 Apr 19.
7
Stiffness, not inertial coupling, determines path curvature of wrist motions.
J Neurophysiol. 2012 Feb;107(4):1230-40. doi: 10.1152/jn.00428.2011. Epub 2011 Nov 30.
8
Effect of static wrist position on grip strength.
Indian J Plast Surg. 2011 Jan;44(1):55-8. doi: 10.4103/0970-0358.81440.
9
A model of the lower limb for analysis of human movement.
Ann Biomed Eng. 2010 Feb;38(2):269-79. doi: 10.1007/s10439-009-9852-5. Epub 2009 Dec 3.
10
Prestress revealed by passive co-tension at the ankle joint.
J Biomech. 2009 Oct 16;42(14):2374-80. doi: 10.1016/j.jbiomech.2009.06.033. Epub 2009 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验