Department of Pediatrics, University of California, San Francisco, School of Medicine, San Francisco, California 94143-0794, USA.
J Neurosci. 2010 Feb 24;30(8):3002-12. doi: 10.1523/JNEUROSCI.4851-09.2010.
Heterozygous LIS1 mutations and males with loss of the X-linked DCX result in lissencephaly, a neuronal migration defect. LIS1 regulates nuclear translocation and mitotic division of neural progenitor cells, while the role of DCX in cortical development remains poorly understood. Here, we uncovered novel neuronal migration and proliferation defects in the Dcx mutant embryonic brains. Although cortical organization was fairly well preserved, Dcx(ko/Y) neurons displayed defective migration velocities similar to Lis1(+/ko) neurons when characterized by time-lapse video-microscopy of embryonic cortical slices. Dcx(ko/Y) migrating neurons displayed novel multidirectional movements with abnormal morphology and increased branching. Surprisingly, Dcx(ko/Y) radial glial cells displayed spindle orientation abnormalities similar to Lis1(+/ko) cells that in turn lead to moderate proliferation defects both in vivo and in vitro. We found functional genetic interaction of the two genes, with the combined effects of Lis1 haploinsufficiency and Dcx knock-out leading to more severe neuronal migration and proliferation phenotypes in the Lis1(+/ko);Dcx(ko/Y) male double mutant compared with the single mutants, resulting in cortical disorganization and depletion of the progenitor pool. Thus, we provide definitive evidence for a critical role for Dcx in neuronal migration and neurogenesis, as well as for the in vivo genetic interaction of the two genes most commonly involved in human neuronal migration defects.
杂合性 LIS1 突变和 X 连锁 DCX 缺失的男性会导致无脑回畸形,这是一种神经元迁移缺陷。LIS1 调节神经祖细胞的核易位和有丝分裂分裂,而 DCX 在皮质发育中的作用仍知之甚少。在这里,我们在 Dcx 突变胚胎脑中发现了新的神经元迁移和增殖缺陷。尽管皮质组织相当完好,但 Dcx(ko/Y)神经元在胚胎皮质切片的延时视频显微镜下表现出与 Lis1(+/ko)神经元相似的迁移速度缺陷。Dcx(ko/Y)迁移神经元表现出新颖的多向运动,形态异常且分支增加。令人惊讶的是,Dcx(ko/Y)放射状胶质细胞表现出与 Lis1(+/ko)细胞相似的纺锤体取向异常,这反过来又导致体内和体外的适度增殖缺陷。我们发现这两个基因存在功能遗传相互作用,Lis1 杂合不足和 Dcx 敲除的联合效应导致 Lis1(+/ko);Dcx(ko/Y)雄性双重突变体中的神经元迁移和增殖表型比单突变体更严重,导致皮质紊乱和祖细胞库耗竭。因此,我们提供了明确的证据表明 Dcx 在神经元迁移和神经发生中起关键作用,以及这两个最常涉及人类神经元迁移缺陷的基因在体内的遗传相互作用。