Suppr超能文献

基于聚合酶基因修饰的新型减毒流感疫苗可预防流感大流行和流感疫情。

Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu.

机构信息

Virginia-Maryland Regional College of Veterinary Medicine and Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA.

出版信息

J Virol. 2010 May;84(9):4587-96. doi: 10.1128/JVI.00101-10. Epub 2010 Feb 24.

Abstract

Human influenza is a seasonal disease associated with significant morbidity and mortality. Influenza vaccination is the most effective means for disease prevention. We have previously shown that mutations in the PB1 and PB2 genes of the live-attenuated influenza vaccine (LAIV) from the cold-adapted (ca) influenza virus A/Ann Arbor/6/60 (H2N2) could be transferred to avian influenza viruses and produce partially attenuated viruses. We also demonstrated that avian influenza viruses carrying the PB1 and PB2 mutations could be further attenuated by stably introducing a hemagglutinin (HA) epitope tag in the PB1 gene. In this work, we wanted to determine whether these modifications would also result in attenuation of a so-called triple reassortant (TR) swine influenza virus (SIV). Thus, the TR influenza A/swine/Wisconsin/14094/99 (H3N2) virus was generated by reverse genetics and subsequently mutated in the PB1 and PB2 genes. Here we show that a combination of mutations in this TR backbone results in an attenuated virus in vitro and in vivo. Furthermore, we show the potential of our TR backbone as a vaccine that provides protection against the 2009 swine-origin pandemic influenza H1N1 virus (S-OIV) when carrying the surface of a classical swine strain. We propose that the availability of alternative backbones to the conventional ca A/Ann Arbor/6/60 LAIV strain could also be useful in epidemic and pandemic influenza and should be considered for influenza vaccine development. In addition, our data provide evidence that the use of these alternative backbones could potentially circumvent the effects of original antigenic sin (OAS) in certain circumstances.

摘要

人患流感是一种季节性疾病,可导致发病率和死亡率显著上升。流感疫苗接种是预防疾病的最有效手段。我们之前已经表明,从冷适应(ca)流感病毒 A/安纳堡/6/60(H2N2)中获得的减毒活流感疫苗(LAIV)的 PB1 和 PB2 基因中的突变可转移到禽流感病毒,并产生部分减毒病毒。我们还证明,携带 PB1 和 PB2 突变的禽流感病毒通过在 PB1 基因中稳定引入血凝素(HA)表位标签,可进一步减毒。在这项工作中,我们想确定这些修饰是否也会导致所谓的三重重配(TR)猪流感病毒(SIV)的衰减。因此,通过反向遗传学生成了 TR 流感 A/猪/威斯康星/14094/99(H3N2)病毒,随后在 PB1 和 PB2 基因中发生突变。在这里,我们表明这种 TR 骨架中的突变组合可导致体外和体内减毒病毒。此外,我们还展示了我们的 TR 骨架作为疫苗的潜力,当携带经典猪株的表面时,它可以提供针对 2009 年猪源大流行流感 H1N1 病毒(S-OIV)的保护。我们认为,除了传统的 ca A/安纳堡/6/60 LAIV 株之外,还可以利用替代的骨架来应对流行和大流行流感,并且应该考虑将其用于流感疫苗的开发。此外,我们的数据提供了证据表明,在某些情况下,使用这些替代骨架可能会潜在地规避原始抗原性失误(OAS)的影响。

相似文献

3
Alternative Strategy for a Quadrivalent Live Attenuated Influenza Virus Vaccine.
J Virol. 2018 Oct 12;92(21). doi: 10.1128/JVI.01025-18. Print 2018 Nov 1.
6
Development of an Alternative Modified Live Influenza B Virus Vaccine.
J Virol. 2017 May 26;91(12). doi: 10.1128/JVI.00056-17. Print 2017 Jun 15.
7
Molecular basis of live-attenuated influenza virus.
PLoS One. 2013;8(3):e60413. doi: 10.1371/journal.pone.0060413. Epub 2013 Mar 26.
8
Mutation L319Q in the PB1 Polymerase Subunit Improves Attenuation of a Candidate Live-Attenuated Influenza A Virus Vaccine.
Microbiol Spectr. 2022 Jun 29;10(3):e0007822. doi: 10.1128/spectrum.00078-22. Epub 2022 May 18.
9
Evaluation of three live attenuated H2 pandemic influenza vaccine candidates in mice and ferrets.
J Virol. 2014 Mar;88(5):2867-76. doi: 10.1128/JVI.01829-13. Epub 2013 Dec 26.

引用本文的文献

1
Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines.
Vaccines (Basel). 2023 Nov 23;11(12):1747. doi: 10.3390/vaccines11121747.
2
Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response.
Front Immunol. 2022 May 19;13:878943. doi: 10.3389/fimmu.2022.878943. eCollection 2022.
4
Development of a Novel Live Attenuated Influenza A Virus Vaccine Encoding the IgA-Inducing Protein.
Vaccines (Basel). 2021 Jun 27;9(7):703. doi: 10.3390/vaccines9070703.
5
Influenza A Virus in Swine: Epidemiology, Challenges and Vaccination Strategies.
Front Vet Sci. 2020 Sep 22;7:647. doi: 10.3389/fvets.2020.00647. eCollection 2020.
7
Alternative Strategy for a Quadrivalent Live Attenuated Influenza Virus Vaccine.
J Virol. 2018 Oct 12;92(21). doi: 10.1128/JVI.01025-18. Print 2018 Nov 1.
8
Development of an Alternative Modified Live Influenza B Virus Vaccine.
J Virol. 2017 May 26;91(12). doi: 10.1128/JVI.00056-17. Print 2017 Jun 15.
9
Immunogenicity and protective efficacy of a Vero cell culture-derived whole-virus H7N9 vaccine in mice and guinea pigs.
PLoS One. 2015 Feb 26;10(2):e0113963. doi: 10.1371/journal.pone.0113963. eCollection 2015.

本文引用的文献

3
Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice.
J Virol. 2009 Oct;83(20):10417-26. doi: 10.1128/JVI.00514-09. Epub 2009 Aug 12.
4
Original antigenic sin responses to influenza viruses.
J Immunol. 2009 Sep 1;183(5):3294-301. doi: 10.4049/jimmunol.0900398. Epub 2009 Jul 31.
5
Emergence and pandemic potential of swine-origin H1N1 influenza virus.
Nature. 2009 Jun 18;459(7249):931-9. doi: 10.1038/nature08157.
6
Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic.
Nature. 2009 Jun 25;459(7250):1122-5. doi: 10.1038/nature08182.
7
The role of swine in the generation of novel influenza viruses.
Zoonoses Public Health. 2009 Aug;56(6-7):326-37. doi: 10.1111/j.1863-2378.2008.01217.x.
8
Host genetic background strongly influences the response to influenza a virus infections.
PLoS One. 2009;4(3):e4857. doi: 10.1371/journal.pone.0004857. Epub 2009 Mar 18.
9
Experimental infection of pigs with the human 1918 pandemic influenza virus.
J Virol. 2009 May;83(9):4287-96. doi: 10.1128/JVI.02399-08. Epub 2009 Feb 18.
10
Swine influenza viruses a North American perspective.
Adv Virus Res. 2008;72:127-54. doi: 10.1016/S0065-3527(08)00403-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验