Suppr超能文献

FoxP3+RORgammat+ T 辅助细胞中间体能抑制自身免疫性糖尿病。

FoxP3+RORgammat+ T helper intermediates display suppressive function against autoimmune diabetes.

机构信息

Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA.

出版信息

J Immunol. 2010 Apr 1;184(7):3377-85. doi: 10.4049/jimmunol.0903324. Epub 2010 Feb 24.

Abstract

Recently, traces of double-positive FoxP3(+)RORgammat(+) T cells were identified and viewed as dual programming differentiation intermediates geared toward development into T regulatory or Th17 cells. In this study, we report that FoxP3(+)RORgammat(+) intermediates arise in the NOD mouse T cell repertoire prior to inflammation and can be expanded with tolerogen without further differentiation. Furthermore, FoxP3(+)RORgammat(+) cells express both CD62L and membrane-bound TGFbeta and use the former to traffic to the pancreas and the latter to suppress effector T cells both in vitro and in vivo. The cells perform these functions as FoxP3(+)RORgammat(+) intermediates, despite being able to terminally differentiate into either FoxP3(+)RORgammat(-) T regulatory or FoxP3(-)RORgammat(+) Th17 cells on polarization. These previously unrecognized observations extend plasticity to both differentiation and function and indicate that the intermediates are poised to traffic to sites of inflammation and target diverse pathogenic T cells, likely without prior conditioning by effector T cells, thus broadening efficacy against autoimmunity.

摘要

最近,人们发现了双阳性 FoxP3(+)RORgammat(+)T 细胞的踪迹,并将其视为向 T 调节或 Th17 细胞分化的双重编程分化中间产物。在这项研究中,我们报告称,FoxP3(+)RORgammat(+)中间产物在炎症发生前就出现在 NOD 小鼠 T 细胞库中,并且可以通过耐受原进行扩增而不进一步分化。此外,FoxP3(+)RORgammat(+)细胞表达 CD62L 和膜结合 TGFβ,前者用于迁移到胰腺,后者用于在体外和体内抑制效应 T 细胞。这些细胞作为 FoxP3(+)RORgammat(+)中间产物发挥这些功能,尽管它们能够在极化时终末分化为 FoxP3(+)RORgammat(-)T 调节细胞或 FoxP3(-)RORgammat(+)Th17 细胞。这些以前未被认识到的观察结果扩展了分化和功能的可塑性,并表明中间产物准备迁移到炎症部位,并针对多种致病性 T 细胞,可能无需效应 T 细胞的预先调节,从而扩大了对自身免疫的疗效。

相似文献

1
FoxP3+RORgammat+ T helper intermediates display suppressive function against autoimmune diabetes.
J Immunol. 2010 Apr 1;184(7):3377-85. doi: 10.4049/jimmunol.0903324. Epub 2010 Feb 24.
2
The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4.
Nat Immunol. 2007 Sep;8(9):958-66. doi: 10.1038/ni1500. Epub 2007 Aug 5.
3
Independent and temporally separated dynamics for RORγt and Foxp3 during Th17 differentiation.
Front Immunol. 2025 Apr 28;16:1462045. doi: 10.3389/fimmu.2025.1462045. eCollection 2025.
4
TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function.
Nature. 2008 May 8;453(7192):236-40. doi: 10.1038/nature06878. Epub 2008 Mar 26.
6
Molecular antagonism and plasticity of regulatory and inflammatory T cell programs.
Immunity. 2008 Jul 18;29(1):44-56. doi: 10.1016/j.immuni.2008.05.007. Epub 2008 Jun 26.
7
Transcriptional regulation of Th17 cell differentiation.
Semin Immunol. 2007 Dec;19(6):409-17. doi: 10.1016/j.smim.2007.10.011. Epub 2007 Nov 28.
8
The Th17/Treg imbalance in patients with acute coronary syndrome.
Clin Immunol. 2008 Apr;127(1):89-97. doi: 10.1016/j.clim.2008.01.009. Epub 2008 Feb 21.
10

引用本文的文献

1
ProS1-MerTK signaling in CD4 T cells: implications for TIL expansion and functionality.
Oncoimmunology. 2025 Dec;14(1):2532662. doi: 10.1080/2162402X.2025.2532662. Epub 2025 Jul 13.
2
Independent and temporally separated dynamics for RORγt and Foxp3 during Th17 differentiation.
Front Immunol. 2025 Apr 28;16:1462045. doi: 10.3389/fimmu.2025.1462045. eCollection 2025.
3
The IL-2 SYNTHORIN molecule promotes functionally adapted Tregs in a preclinical model of type 1 diabetes.
JCI Insight. 2024 Dec 20;9(24):e182064. doi: 10.1172/jci.insight.182064.
4
T-helper cells flexibility: the possibility of reprogramming T cells fate.
Front Immunol. 2023 Nov 1;14:1284178. doi: 10.3389/fimmu.2023.1284178. eCollection 2023.
6
8
ApoB-Specific CD4 T Cells in Mouse and Human Atherosclerosis.
Cells. 2021 Feb 19;10(2):446. doi: 10.3390/cells10020446.
9
Heterogeneity of T Cells in Atherosclerosis Defined by Single-Cell RNA-Sequencing and Cytometry by Time of Flight.
Arterioscler Thromb Vasc Biol. 2021 Feb;41(2):549-563. doi: 10.1161/ATVBAHA.120.312137. Epub 2020 Dec 3.
10
Transient Expression of IL-17A in Foxp3 Fate-Tracked Cells in -Mediated Oral Dysbiosis.
Front Immunol. 2020 Apr 23;11:677. doi: 10.3389/fimmu.2020.00677. eCollection 2020.

本文引用的文献

2
The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation.
Nat Immunol. 2009 Jun;10(6):595-602. doi: 10.1038/ni.1731. Epub 2009 May 3.
3
Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice.
J Clin Invest. 2009 Mar;119(3):565-72. doi: 10.1172/JCI37865. Epub 2009 Feb 2.
4
Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses.
Nature. 2009 Mar 19;458(7236):351-6. doi: 10.1038/nature07674. Epub 2009 Feb 1.
8
Th memory for interleukin-17 expression is stable in vivo.
Eur J Immunol. 2008 Oct;38(10):2654-64. doi: 10.1002/eji.200838541.
9
CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner.
J Exp Med. 2008 Sep 1;205(9):1975-81. doi: 10.1084/jem.20080308. Epub 2008 Aug 18.
10
Molecular antagonism and plasticity of regulatory and inflammatory T cell programs.
Immunity. 2008 Jul 18;29(1):44-56. doi: 10.1016/j.immuni.2008.05.007. Epub 2008 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验