Suppr超能文献

施氏假丝酵母蔗糖酶的结构与动力学分析揭示了一种新的寡聚化模式及其补充结构域在底物结合中的作用。

Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding.

机构信息

Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

出版信息

J Biol Chem. 2010 Apr 30;285(18):13930-41. doi: 10.1074/jbc.M109.095430. Epub 2010 Feb 24.

Abstract

Schwanniomyces occidentalis invertase is an extracellular enzyme that hydrolyzes sucrose and releases beta-fructose from various oligosaccharides and essential storage fructan polymers such as inulin. We report here the three-dimensional structure of Sw. occidentalis invertase at 2.9 A resolution and its complex with fructose at 1.9 A resolution. The monomer presents a bimodular arrangement common to other GH32 enzymes, with an N-terminal 5-fold beta-propeller catalytic domain and a C-terminal beta-sandwich domain for which the function has been unknown until now. However, the dimeric nature of Sw. occidentalis invertase reveals a unique active site cleft shaped by both subunits that may be representative of other yeast enzymes reported to be multimeric. Binding of the tetrasaccharide nystose and the polymer inulin was explored by docking analysis, which suggested that medium size and long substrates are recognized by residues from both subunits. The identified residues were mutated, and the enzymatic activity of the mutants against sucrose, nystose, and inulin were investigated by kinetic analysis. The replacements that showed the largest effect on catalytic efficiency were Q228V, a residue putatively involved in nystose and inulin binding, and S281I, involved in a polar link at the dimer interface. Moreover, a significant decrease in catalytic efficiency against inulin was observed in the mutants Q435A and Y462A, both located in the beta-sandwich domain of the second monomer. This highlights the essential function that oligomerization plays in substrate specificity and assigns, for the first time, a direct catalytic role to the supplementary domain of a GH32 enzyme.

摘要

施氏假丝酵母蔗糖酶是一种细胞外酶,能够水解蔗糖,并从各种低聚糖和必需的储存果聚糖聚合物(如菊粉)中释放β-果糖。我们在此报告了 Sw.occidentalis 蔗糖酶在 2.9Å分辨率下的三维结构及其与果糖在 1.9Å分辨率下的复合物。单体呈现出与其他 GH32 酶常见的双模块排列,具有 N 端的 5 倍β-三叶螺旋催化结构域和 C 端的β-三明治结构域,其功能至今仍未知。然而,Sw.occidentalis 蔗糖酶的二聚体性质揭示了一个独特的活性位点裂缝,由两个亚基共同形成,这可能代表了其他报道为多聚体的酵母酶。通过对接分析探讨了四糖棉子糖和聚合物菊粉的结合情况,这表明中大小和长底物被来自两个亚基的残基识别。鉴定出的残基被突变,并通过动力学分析研究了突变体对蔗糖、棉子糖和菊粉的酶活性。对催化效率影响最大的取代是 Q228V,这是一个推测与棉子糖和菊粉结合的残基,以及 S281I,它涉及二聚体界面上的极性键。此外,在 Q435A 和 Y462A 突变体中观察到对菊粉的催化效率显著降低,这两个突变体都位于第二个单体的β-三明治结构域中。这突出了寡聚化在底物特异性中的重要作用,并首次赋予了 GH32 酶的补充结构域直接的催化作用。

相似文献

6
Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose.
Appl Microbiol Biotechnol. 2019 Jan;103(1):279-289. doi: 10.1007/s00253-018-9446-y. Epub 2018 Oct 24.
7
Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from Schwanniomyces occidentalis.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Nov 1;65(Pt 11):1162-5. doi: 10.1107/S1744309109039384. Epub 2009 Oct 30.
9
Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity.
J Biol Chem. 2013 Apr 5;288(14):9755-9766. doi: 10.1074/jbc.M112.446435. Epub 2013 Feb 21.

引用本文的文献

1
Oligomeric Structure of Yeast and Other Invertases Governs Specificity.
Subcell Biochem. 2024;104:503-530. doi: 10.1007/978-3-031-58843-3_19.
3
Protein engineering of invertase for enhancing yeast dough fermentation under high-sucrose conditions.
Folia Microbiol (Praha). 2023 Apr;68(2):207-217. doi: 10.1007/s12223-022-01006-y. Epub 2022 Oct 6.
4
Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4.
Appl Microbiol Biotechnol. 2022 Jun;106(12):4617-4626. doi: 10.1007/s00253-022-12037-3. Epub 2022 Jun 24.
5
Enzymatic synthesis of novel fructosylated compounds by Ffase from in green solvents.
RSC Adv. 2021 Jul 9;11(39):24312-24319. doi: 10.1039/d1ra01391b. eCollection 2021 Jul 6.
6
Enzymatic and structural characterization of β-fructofuranosidase from the honeybee gut bacterium Frischella perrara.
Appl Microbiol Biotechnol. 2022 Apr;106(7):2455-2470. doi: 10.1007/s00253-022-11863-9. Epub 2022 Mar 10.
9
Chance or Necessity-The Fungi Co-Occurring with Ants.
Insects. 2021 Feb 28;12(3):204. doi: 10.3390/insects12030204.
10
Insect derived extra oral GH32 plays a role in susceptibility of wheat to Hessian fly.
Sci Rep. 2021 Jan 22;11(1):2081. doi: 10.1038/s41598-021-81481-4.

本文引用的文献

1
Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from Schwanniomyces occidentalis.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Nov 1;65(Pt 11):1162-5. doi: 10.1107/S1744309109039384. Epub 2009 Oct 30.
2
AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.
J Comput Chem. 2009 Dec;30(16):2785-91. doi: 10.1002/jcc.21256.
5
Inference of macromolecular assemblies from crystalline state.
J Mol Biol. 2007 Sep 21;372(3):774-97. doi: 10.1016/j.jmb.2007.05.022. Epub 2007 May 13.
7
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83. doi: 10.1093/nar/gkm216. Epub 2007 Apr 22.
9
X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana.
Acta Crystallogr D Biol Crystallogr. 2006 Dec;62(Pt 12):1555-63. doi: 10.1107/S0907444906044489. Epub 2006 Nov 23.
10
Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus.
J Biotechnol. 2007 Jan 30;128(1):204-11. doi: 10.1016/j.jbiotec.2006.09.017. Epub 2006 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验