Suppr超能文献

Akt活性与稳定性的生理调节

Physiological regulation of Akt activity and stability.

作者信息

Liao Yong, Hung Mien-Chie

出版信息

Am J Transl Res. 2010 Jan 1;2(1):19-42.

Abstract

The serine/threonine protein kinase B (PKB, also known as Akt) constitutes an important node in diverse signaling cascades downstream of growth factor receptor tyrosine kinases. Akt plays an essential role in cell survival, growth, migration, proliferation, polarity, and metabolism (lipid and glucose); cell cycle progression; muscle and cardiomyocyte contractility; angiogenesis; and self-renewal of stem cells. Altered Akt activity has been associated with cancer and other disease conditions, such as diabetes mellitus, neurodegenerative diseases, and muscle hypotrophy. In the past decade, the upstream signals that lead to Akt activation, the downstream substrates that exert the effects of Akt, and the secondary binding proteins that regulate Akt activation have been well documented. Recent reports from our group and others have revealed how the stability of Akt protein is regulated through phosphorylation on its Thr-Pro motifs. This literature review details findings of those reports and others relevant to the regulation of Akt activation by its upstream kinases, with a focus on mammalian target of rapamycin complexes (mTORCs) and inactivation by PHLDA3 and the protein phosphatases PP2A and pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Reports on ubiquitin-dependent Akt degradation, caspase-dependent cleavage, and the roles of molecular chaperone heat shock protein 90 (Hsp90) in the regulation of Akt stability are summarized. The highlight will be on the role of "turn motif" phosphorylation and an isomerase, Pin1, in the regulation of Akt stability. We also discuss issues related to the intricate mTORC2-AktmTORC1 loop and the contradictory regulation of Akt phosphorylation and stabilization of Akt by mTORC2. Finally, we offer perspective on potential future directions for investigation, particularly on translating the knowledge we learned on the regulation of Akt stability into therapeutic intervention on human cancer with Akt alteration.

摘要

丝氨酸/苏氨酸蛋白激酶B(PKB,也称为Akt)是生长因子受体酪氨酸激酶下游多种信号级联反应中的一个重要节点。Akt在细胞存活、生长、迁移、增殖、极性和代谢(脂质和葡萄糖);细胞周期进程;肌肉和心肌细胞收缩性;血管生成;以及干细胞自我更新中发挥着至关重要的作用。Akt活性改变与癌症和其他疾病状况相关,如糖尿病、神经退行性疾病和肌肉萎缩。在过去十年中,导致Akt激活的上游信号、发挥Akt作用的下游底物以及调节Akt激活的二级结合蛋白都有了充分的记录。我们小组和其他团队最近的报告揭示了Akt蛋白的稳定性是如何通过其苏氨酸-脯氨酸基序上的磷酸化来调节的。这篇文献综述详细阐述了这些报告以及其他与Akt上游激酶调节Akt激活相关的研究结果,重点关注雷帕霉素复合物的哺乳动物靶点(mTORCs)以及PHLDA3、蛋白磷酸酶PP2A和pleckstrin同源结构域富含亮氨酸重复蛋白磷酸酶(PHLPP)对Akt的失活作用。总结了关于泛素依赖性Akt降解、半胱天冬酶依赖性切割以及分子伴侣热休克蛋白90(Hsp90)在Akt稳定性调节中的作用的报告。重点将放在“转折基序”磷酸化和异构酶Pin1在Akt稳定性调节中的作用上。我们还讨论了与复杂的mTORC2-Akt-mTORC1环以及mTORC2对Akt磷酸化和Akt稳定化的矛盾调节相关的问题。最后,我们对未来潜在的研究方向提出了展望,特别是关于将我们在Akt稳定性调节方面学到的知识转化为对Akt改变的人类癌症的治疗干预。

相似文献

1
Physiological regulation of Akt activity and stability.
Am J Transl Res. 2010 Jan 1;2(1):19-42.
6
Emerging roles of PHLPP phosphatases in metabolism.
BMB Rep. 2021 Sep;54(9):451-457. doi: 10.5483/BMBRep.2021.54.9.095.

引用本文的文献

1
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways.
Int J Mol Sci. 2025 Aug 1;26(15):7434. doi: 10.3390/ijms26157434.
4
The Role of PHLDA3 in Cancer Progression and Its Potential as a Therapeutic Target.
Cancers (Basel). 2025 Mar 22;17(7):1069. doi: 10.3390/cancers17071069.
5
Plant protein-derived anti-breast cancer peptides: sources, therapeutic approaches, mechanisms, and nanoparticle design.
Front Pharmacol. 2025 Jan 17;15:1468977. doi: 10.3389/fphar.2024.1468977. eCollection 2024.
6
PP2A activation overcomes leptomeningeal dissemination in group 3 medulloblastoma.
J Biol Chem. 2024 Nov;300(11):107892. doi: 10.1016/j.jbc.2024.107892. Epub 2024 Oct 16.
9
Altering phosphorylation in cancer through PP2A modifiers.
Cancer Cell Int. 2024 Jan 6;24(1):11. doi: 10.1186/s12935-023-03193-1.

本文引用的文献

1
GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer.
Nature. 2009 Jun 25;459(7250):1085-90. doi: 10.1038/nature08109.
3
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival.
Cell. 2009 May 29;137(5):873-86. doi: 10.1016/j.cell.2009.03.046. Epub 2009 May 14.
4
Microarray analysis of prothrombin knockdown in zebrafish.
Blood Cells Mol Dis. 2009 Sep-Oct;43(2):202-10. doi: 10.1016/j.bcmd.2009.04.001. Epub 2009 May 13.
5
Targeting HSP90 for cancer therapy.
Br J Cancer. 2009 May 19;100(10):1523-9. doi: 10.1038/sj.bjc.6605066. Epub 2009 Apr 28.
6
New insights into mTOR signaling: mTORC2 and beyond.
Sci Signal. 2009 Apr 21;2(67):pe27. doi: 10.1126/scisignal.267pe27.
7
The proteasomal system.
Mol Aspects Med. 2009 Aug;30(4):191-296. doi: 10.1016/j.mam.2009.04.001. Epub 2009 Apr 14.
8
Common polymorphism in the phosphatase PHLPP2 results in reduced regulation of Akt and protein kinase C.
J Biol Chem. 2009 May 29;284(22):15215-23. doi: 10.1074/jbc.M901468200. Epub 2009 Mar 26.
9
PIKKing on PKB: regulation of PKB activity by phosphorylation.
Curr Opin Cell Biol. 2009 Apr;21(2):256-61. doi: 10.1016/j.ceb.2009.02.002. Epub 2009 Mar 19.
10
From protein-protein interaction to therapy response: molecular imaging of heat shock proteins.
Eur J Radiol. 2009 May;70(2):294-304. doi: 10.1016/j.ejrad.2009.01.052. Epub 2009 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验