Suppr超能文献

TOPTMH:跨膜α螺旋拓扑结构预测器

TOPTMH: topology predictor for transmembrane alpha-helices.

作者信息

Ahmed Rezwan, Rangwala Huzefa, Karypis George

机构信息

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

J Bioinform Comput Biol. 2010 Feb;8(1):39-57. doi: 10.1142/s0219720010004501.

Abstract

Alpha-helical transmembrane proteins mediate many key biological processes and represent 20%-30% of all genes in many organisms. Due to the difficulties in experimentally determining their high-resolution 3D structure, computational methods to predict the location and orientation of transmembrane helix segments using sequence information are essential. We present TOPTMH, a new transmembrane helix topology prediction method that combines support vector machines, hidden Markov models, and a widely used rule-based scheme. The contribution of this work is the development of a prediction approach that first uses a binary SVM classifier to predict the helix residues and then it employs a pair of HMM models that incorporate the SVM predictions and hydropathy-based features to identify the entire transmembrane helix segments by capturing the structural characteristics of these proteins. TOPTMH outperforms state-of-the-art prediction methods and achieves the best performance on an independent static benchmark.

摘要

α-螺旋跨膜蛋白介导许多关键的生物学过程,在许多生物体中占所有基因的20%-30%。由于通过实验确定其高分辨率三维结构存在困难,利用序列信息预测跨膜螺旋段的位置和方向的计算方法至关重要。我们提出了TOPTMH,一种新的跨膜螺旋拓扑预测方法,它结合了支持向量机、隐马尔可夫模型和一种广泛使用的基于规则的方案。这项工作的贡献在于开发了一种预测方法,该方法首先使用二元支持向量机分类器预测螺旋残基,然后采用一对隐马尔可夫模型,将支持向量机预测和基于亲水性的特征结合起来,通过捕捉这些蛋白质的结构特征来识别整个跨膜螺旋段。TOPTMH优于现有的预测方法,并在独立的静态基准测试中取得了最佳性能。

相似文献

1
TOPTMH: topology predictor for transmembrane alpha-helices.
J Bioinform Comput Biol. 2010 Feb;8(1):39-57. doi: 10.1142/s0219720010004501.
3
Predicting Alpha Helical Transmembrane Proteins Using HMMs.
Methods Mol Biol. 2017;1552:63-82. doi: 10.1007/978-1-4939-6753-7_5.
6
A hidden Markov model with molecular mechanics energy-scoring function for transmembrane helix prediction.
Comput Biol Chem. 2004 Oct;28(4):265-74. doi: 10.1016/j.compbiolchem.2004.07.002.
7
Combined prediction of transmembrane topology and signal peptide of beta-barrel proteins: using a hidden Markov model and genetic algorithms.
Comput Biol Med. 2010 Jul;40(7):621-8. doi: 10.1016/j.compbiomed.2010.04.006. Epub 2010 May 21.
9
The prediction of amphiphilic alpha-helices.
Curr Protein Pept Sci. 2002 Apr;3(2):201-21. doi: 10.2174/1389203024605368.
10
Transmembrane helix prediction using amino acid property features and latent semantic analysis.
BMC Bioinformatics. 2008;9 Suppl 1(Suppl 1):S4. doi: 10.1186/1471-2105-9-S1-S4.

引用本文的文献

1
Membrane topological structure of neutral system N/A amino acid transporter 4 (SNAT4) protein.
J Biol Chem. 2011 Nov 4;286(44):38086-38094. doi: 10.1074/jbc.M111.220277. Epub 2011 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验