Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, USA.
J Am Chem Soc. 2010 Mar 24;132(11):3953-64. doi: 10.1021/ja910850y.
Posttranscriptional modifications of ribosomal RNA (rRNA) nucleotides are a common mechanism of modulating the ribosome's function and conferring bacterial resistance to ribosome-targeting antibiotics. One such modification is methylation of an adenosine nucleotide within the peptidyl transferase center of the ribosome mediated by the endogenous methyltransferase RlmN and its evolutionarily related resistance enzyme Cfr. These methyltransferases catalyze methyl transfer to aromatic carbon atoms of the adenosine within a complex 23S rRNA substrate to form the 2,8-dimethylated product. RlmN and Cfr are members of the Radical SAM superfamily and contain the characteristic cysteine-rich CX(3)CX(2)C motif. We demonstrate that both enzymes are capable of accommodating the requisite [4Fe-4S] cluster. S-Adenosylmethionine (SAM) is both the methyl donor and the source of a 5'-deoxyadenosyl radical, which activates the substrate for methylation. Detailed analyses of the rRNA requirements show that the enzymes can utilize protein-free 23S rRNA as a substrate, but not the fully assembled large ribosomal subunit, suggesting that the methylations take place during the assembly of the ribosome. The key recognition elements in the 23S rRNA are helices 90-92 and the adjacent single stranded RNA that encompasses A2503. To our knowledge, this study represents the first in vitro description of a methyl transfer catalyzed by a member of the Radical SAM superfamily, and it expands the catalytic repertoire of this diverse enzyme class. Furthermore, by providing information on both the timing of methylation and its substrate requirements, our findings have important implications for the functional consequences of Cfr-mediated modification of rRNA in the acquisition of antibiotic resistance.
核糖体 RNA(rRNA)核苷酸的转录后修饰是调节核糖体功能并赋予细菌对核糖体靶向抗生素抗性的常见机制。其中一种修饰是由内源性甲基转移酶 RlmN 及其进化相关的抗性酶 Cfr 介导的核糖体肽基转移酶中心中腺苷核苷酸的甲基化。这些甲基转移酶催化甲基转移到核糖体 23S rRNA 底物中腺苷的芳香碳原子上,形成 2,8-二甲基产物。RlmN 和 Cfr 是 Radical SAM 超家族的成员,包含特征性富含半胱氨酸的 CX(3)CX(2)C 基序。我们证明这两种酶都能够容纳必需的[4Fe-4S]簇。S-腺苷甲硫氨酸(SAM)既是甲基供体,也是 5'-脱氧腺苷自由基的来源,该自由基激活甲基化的底物。对 rRNA 要求的详细分析表明,这些酶可以利用无蛋白的 23S rRNA 作为底物,但不能利用完全组装的大亚基核糖体,这表明甲基化发生在核糖体组装过程中。23S rRNA 中的关键识别元件是螺旋 90-92 和相邻的单链 RNA,其中包含 A2503。据我们所知,这项研究代表了 Radical SAM 超家族成员催化的甲基转移的首次体外描述,并扩展了这种多样化酶类的催化谱。此外,通过提供关于甲基化时间及其底物要求的信息,我们的发现对于 Cfr 介导的 rRNA 修饰在获得抗生素抗性中的功能后果具有重要意义。