Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
Acc Chem Res. 2012 Apr 17;45(4):555-64. doi: 10.1021/ar200202c. Epub 2011 Nov 18.
Methylation is an essential and ubiquitous reaction that plays an important role in a wide range of biological processes. Most biological methylations use S-adenosylmethionine (SAM) as the methyl donor and proceed via an S(N)2 displacement mechanism. However, researchers have discovered an increasing number of methylations that involve radical chemistry. The enzymes known to catalyze these reactions all belong to the radical SAM superfamily. This family of enzymes utilizes a specialized [4Fe-4S] cluster for reductive cleavage of SAM to yield a highly reactive 5'-deoxyadenosyl (dAdo) radical. Radical chemistry is then imposed on a variety of organic substrates, leading to a diverse array of transformations. Until recently, researchers had not fully understood how these enzymes employ radical chemistry to mediate a methyl transfer reaction. Sequence analyses reveal that the currently identified radical SAM methyltransferases (RSMTs) can be grouped into three classes, which appear distinct in protein architecture and mechanism. Class A RSMTs mainly include the rRNA methyltransferases RlmN and Cfr from various origins. As exemplified by Escherichia coli RlmN, these proteins have a single canonical radical SAM core domain that includes an (βα)(6) partial barrel most similar to that of pyruvate formate lyase-activase. The exciting recent studies on RlmN and Cfr are beginning to provide insights into the intriguing chemistry of class A RSMTs. These enzymes utilize a methylene radical generated on a unique methylated cysteine residue. However, based on the variety of substrates used by the other classes of RSMTs, alternative mechanisms are likely to be discovered. Class B RSMTs contain a proposed N-terminal cobalamin binding domain in addition to a radical SAM domain at the C-terminus. This class of proteins methylates diverse substrates at inert sp(3) carbons, aromatic heterocycles, and phosphinates, possibly involving a cobalamin-mediated methyl transfer process. Class C RSMTs share significant sequence similarity with coproporphyrinogen III oxidase HemN. Despite methylating similar substrates (aromatic heterocycles), class C RSMTs likely employ a mechanism distinct from that of class A because two conserved cysteines that are required for class A are typically not found in class C RSMTs. Class A and class B enzymes probably share the use of two molecules of SAM: one to generate a dAdo radical and one to provide the methyl group to the substrate. In class A, a cysteine would act as a conduit of the methyl group whereas in class B cobalamin may serve this purpose. Currently no clues are available regarding the mechanism of class C RSMTs, but the sequence similarities between its members and HemN and the observation that HemN binds two SAM molecules suggest that class C enzymes could use two SAM molecules for catalysis. The diverse strategies for using two SAM molecules reflect the rich chemistry of radical-mediated methylation reactions and the remarkable versatility of the radical SAM superfamily.
甲基化是一种重要且普遍存在的反应,在广泛的生物过程中发挥着重要作用。大多数生物甲基化使用 S-腺苷甲硫氨酸 (SAM) 作为甲基供体,并通过 S(N)2 置换机制进行。然而,研究人员发现越来越多的甲基化涉及自由基化学。已知催化这些反应的酶都属于自由基 SAM 超家族。该酶家族利用一种特殊的 [4Fe-4S] 簇进行 SAM 的还原裂解,产生高反应性的 5'-脱氧腺苷 (dAdo) 自由基。然后,自由基化学被强加于各种有机底物上,导致多种转化。直到最近,研究人员还不完全了解这些酶如何利用自由基化学来介导甲基转移反应。序列分析表明,目前鉴定的自由基 SAM 甲基转移酶 (RSMT) 可分为三类,它们在蛋白质结构和机制上明显不同。A 类 RSMT 主要包括来自不同来源的 rRNA 甲基转移酶 RlmN 和 Cfr。以大肠杆菌 RlmN 为例,这些蛋白质具有一个单一的规范的自由基 SAM 核心结构域,该结构域包含一个(βα)(6)部分桶,与丙酮酸甲酸裂解酶-激活酶的结构域最为相似。最近对 RlmN 和 Cfr 的令人兴奋的研究开始提供有关 A 类 RSMT 迷人化学的见解。这些酶利用在独特的甲基化半胱氨酸残基上生成的亚甲基自由基。然而,基于其他类 RSMT 所使用的各种底物,可能会发现替代机制。B 类 RSMT 除了在 C 末端具有自由基 SAM 结构域外,还包含一个假定的钴胺素结合结构域。该类蛋白在惰性 sp(3)碳、芳杂环和膦酸酯上甲基化各种底物,可能涉及钴胺素介导的甲基转移过程。C 类 RSMT 与原卟啉原 III 氧化酶 HemN 具有显著的序列相似性。尽管 C 类 RSMT 甲基化类似的底物(芳杂环),但它们可能采用与 A 类不同的机制,因为 A 类所需的两个保守半胱氨酸通常在 C 类 RSMT 中不存在。A 类和 B 类酶可能共享两种 SAM 分子的使用:一种用于生成 dAdo 自由基,另一种用于将甲基供体提供给底物。在 A 类中,半胱氨酸可以作为甲基供体的通道,而在 B 类中,钴胺素可能具有此作用。目前尚无关于 C 类 RSMT 机制的线索,但该酶家族成员与 HemN 之间的序列相似性以及观察到 HemN 结合两个 SAM 分子表明 C 类酶可以使用两个 SAM 分子进行催化。使用两个 SAM 分子的不同策略反映了自由基介导的甲基化反应的丰富化学性质和自由基 SAM 超家族的卓越多功能性。