Suppr超能文献

TAR RNA 结合蛋白对 siRNA 不对称性的识别。

Recognition of siRNA asymmetry by TAR RNA binding protein.

机构信息

Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824-1226, USA.

出版信息

Biochemistry. 2010 Apr 13;49(14):3148-55. doi: 10.1021/bi902189s.

Abstract

The recognition of small interfering RNAs (siRNAs) by the RNA-induced silencing complex (RISC) and its precursor, the RISC loading complex (RLC), is a key step in the RNA interference pathway that controls the subsequent sequence-specific mRNA degradation. In Drosophila, selection of the guide strand has been shown to be mediated by RLC protein R2D2, which senses the relative hybridization stability between the two ends of the siRNA. A protein with similar function has yet to be conclusively identified in humans. We show here that human TAR RNA binding protein (TRBP) alone can bind siRNAs in vitro and sense their asymmetry. We also show that TRBP can bind 21-nucleotide single-stranded RNAs, though with far lower affinity than for double-stranded siRNA, and that TRBP cross-links preferentially to the 3'-ends of the guide strands of siRNAs. This suggests that TRBP binding depends both on the sequences of the siRNA strands and on the relative hybridization stability of the ends of the duplex. Together, these results demonstrate the importance of the siRNA-TRBP interaction in the selection of the siRNA guide strand in RNAi.

摘要

小干扰 RNA(siRNA)被 RNA 诱导沉默复合物(RISC)及其前体 RISC 加载复合物(RLC)识别,是 RNA 干扰途径中控制随后的序列特异性 mRNA 降解的关键步骤。在果蝇中,已经证明向导链的选择是由 RLC 蛋白 R2D2 介导的,它可以感知 siRNA 两端的相对杂交稳定性。在人类中,尚未明确鉴定出具有类似功能的蛋白质。我们在这里表明,人类 TAR RNA 结合蛋白(TRBP)本身可以在体外结合 siRNA 并感知其不对称性。我们还表明,TRBP 可以结合 21 个核苷酸的单链 RNA,但与双链 siRNA 的亲和力要低得多,并且 TRBP 交联优先发生在 siRNA 向导链的 3'-末端。这表明 TRBP 结合不仅取决于 siRNA 链的序列,还取决于双链体末端的相对杂交稳定性。这些结果共同证明了 siRNA-TRBP 相互作用在 RNAi 中 siRNA 向导链选择中的重要性。

相似文献

1
Recognition of siRNA asymmetry by TAR RNA binding protein.
Biochemistry. 2010 Apr 13;49(14):3148-55. doi: 10.1021/bi902189s.
2
Distinguishable in vitro binding mode of monomeric TRBP and dimeric PACT with siRNA.
PLoS One. 2013 May 2;8(5):e63434. doi: 10.1371/journal.pone.0063434. Print 2013.
3
Molecular basis for asymmetry sensing of siRNAs by the Drosophila Loqs-PD/Dcr-2 complex in RNA interference.
Nucleic Acids Res. 2017 Dec 1;45(21):12536-12550. doi: 10.1093/nar/gkx886.
4
A protein sensor for siRNA asymmetry.
Science. 2004 Nov 19;306(5700):1377-80. doi: 10.1126/science.1102755.
6
HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs.
RNA Biol. 2015;12(2):123-35. doi: 10.1080/15476286.2015.1014759.
7
Multiple sensors ensure guide strand selection in human RNAi pathways.
RNA. 2013 May;19(5):639-48. doi: 10.1261/rna.037424.112. Epub 2013 Mar 26.
8
Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection.
Nucleic Acids Res. 2008 Oct;36(18):5812-21. doi: 10.1093/nar/gkn584. Epub 2008 Sep 9.
9
Structure of the Dicer-2-R2D2 heterodimer bound to a small RNA duplex.
Nature. 2022 Jul;607(7918):393-398. doi: 10.1038/s41586-022-04790-2. Epub 2022 Jun 29.
10
Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains.
EMBO J. 2018 Mar 15;37(6). doi: 10.15252/embj.201797089. Epub 2018 Feb 15.

引用本文的文献

1
Improving the potency prediction for chemically modified siRNAs through insights from molecular modeling of individual sequence positions.
Mol Ther Nucleic Acids. 2024 Dec 5;36(1):102415. doi: 10.1016/j.omtn.2024.102415. eCollection 2025 Mar 11.
2
microRNA strand selection: Unwinding the rules.
Wiley Interdiscip Rev RNA. 2021 May;12(3):e1627. doi: 10.1002/wrna.1627. Epub 2020 Sep 20.
4
Endocytosis Controls siRNA Efficiency: Implications for siRNA Delivery Vehicle Design and Cell-Specific Targeting.
Nucleic Acid Ther. 2020 Feb;30(1):22-32. doi: 10.1089/nat.2019.0804. Epub 2019 Nov 12.
5
Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains.
EMBO J. 2018 Mar 15;37(6). doi: 10.15252/embj.201797089. Epub 2018 Feb 15.
6
Molecular basis for asymmetry sensing of siRNAs by the Drosophila Loqs-PD/Dcr-2 complex in RNA interference.
Nucleic Acids Res. 2017 Dec 1;45(21):12536-12550. doi: 10.1093/nar/gkx886.
7
Interaction of PKR with single-stranded RNA.
Sci Rep. 2017 Jun 13;7(1):3335. doi: 10.1038/s41598-017-03047-7.
8
Dextran functionalization enhances nanoparticle-mediated siRNA delivery and silencing.
Technology (Singap World Sci). 2016 Mar;4(1). doi: 10.1142/S2339547816400100. Epub 2016 Mar 31.
9
Terminal Duplex Stability and Nucleotide Identity Differentially Control siRNA Loading and Activity in RNA Interference.
Nucleic Acid Ther. 2016 Oct;26(5):309-317. doi: 10.1089/nat.2016.0612. Epub 2016 Jul 11.
10
Recombinant hTRBP and hPACT Modulate hAgo2-Catalyzed siRNA-Mediated Target RNA Cleavage In Vitro.
PLoS One. 2016 Jan 19;11(1):e0146814. doi: 10.1371/journal.pone.0146814. eCollection 2016.

本文引用的文献

1
2
Structural insights into RNA processing by the human RISC-loading complex.
Nat Struct Mol Biol. 2009 Nov;16(11):1148-53. doi: 10.1038/nsmb.1673. Epub 2009 Oct 11.
3
Effect of siRNA terminal mismatches on TRBP and Dicer binding and silencing efficacy.
FEBS J. 2009 Nov;276(22):6576-85. doi: 10.1111/j.1742-4658.2009.07364.x. Epub 2009 Oct 7.
6
dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi.
J Mol Biol. 2008 Dec 26;384(4):967-79. doi: 10.1016/j.jmb.2008.10.002. Epub 2008 Oct 11.
7
A role for the Dicer helicase domain in the processing of thermodynamically unstable hairpin RNAs.
Nucleic Acids Res. 2008 Nov;36(20):6511-22. doi: 10.1093/nar/gkn687. Epub 2008 Oct 15.
9
Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.
Biotechnol Bioeng. 2008 Jul 1;100(4):744-55. doi: 10.1002/bit.21798.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验