Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
Science. 2010 Feb 26;327(5969):1110-4. doi: 10.1126/science.1184362.
Efficient synthesis of renewable fuels remains a challenging and important line of research. We report a strategy by which aqueous solutions of gamma-valerolactone (GVL), produced from biomass-derived carbohydrates, can be converted to liquid alkenes in the molecular weight range appropriate for transportation fuels by an integrated catalytic system that does not require an external source of hydrogen. The GVL feed undergoes decarboxylation at elevated pressures (e.g., 36 bar) over a silica/alumina catalyst to produce a gas stream composed of equimolar amounts of butene and carbon dioxide. This stream is fed directly to an oligomerization reactor containing an acid catalyst (e.g., H ZSM-5, Amberlyst-70), which couples butene monomers to form condensable alkenes with molecular weights that can be targeted for gasoline and/or jet fuel applications. The effluent gaseous stream of CO2 at elevated pressure can potentially be captured and then treated or sequestered to mitigate greenhouse gas emissions from the process.
高效合成可再生燃料仍然是一个具有挑战性和重要性的研究领域。我们报告了一种策略,通过该策略,在不依赖外部氢气源的情况下,利用集成催化体系,将来源于生物质衍生碳水化合物的γ-戊内酯(GVL)水溶液转化为适用于运输燃料的分子量范围内的液体烯烃。GVL 进料在升高的压力(例如 36 巴)下在二氧化硅/氧化铝催化剂上进行脱羧,产生由等摩尔量的丁烯和二氧化碳组成的气流。该气流直接进料到含有酸催化剂(例如 H ZSM-5、Amberlyst-70)的齐聚反应器中,其中丁烯单体偶联形成可缩合的烯烃,分子量可针对汽油和/或喷气燃料应用进行靶向。在升高的压力下,CO2 的流出气态流有可能被捕获,然后进行处理或隔离,以减轻该过程的温室气体排放。