Suppr超能文献

状态图在基因网络建模中的应用。

Statecharts for gene network modeling.

机构信息

Department of Electrical Engineering, University of Texas at Dallas, Richardson, Texas, United States of America.

出版信息

PLoS One. 2010 Feb 23;5(2):e9376. doi: 10.1371/journal.pone.0009376.

Abstract

State diagrams (stategraphs) are suitable for describing the behavior of dynamic systems. However, when they are used to model large and complex systems, determining the states and transitions among them can be overwhelming, due to their flat, unstratified structure. In this article, we present the use of statecharts as a novel way of modeling complex gene networks. Statecharts extend conventional state diagrams with features such as nested hierarchy, recursion, and concurrency. These features are commonly utilized in engineering for designing complex systems and can enable us to model complex gene networks in an efficient and systematic way. We modeled five key gene network motifs, simple regulation, autoregulation, feed-forward loop, single-input module, and dense overlapping regulon, using statecharts. Specifically, utilizing nested hierarchy and recursion, we were able to model a complex interlocked feed-forward loop network in a highly structured way, demonstrating the potential of our approach for modeling large and complex gene networks.

摘要

状态图(stategraphs)适合描述动态系统的行为。然而,当它们被用于对大型和复杂系统建模时,由于其平面、无分层的结构,确定其中的状态和状态之间的转换可能会让人不知所措。在本文中,我们提出使用状态图作为一种新的方法来对复杂的基因网络进行建模。状态图通过嵌套层次结构、递归和并发性等特性扩展了传统的状态图。这些特性在工程设计中常用于复杂系统,使我们能够以高效和系统的方式对复杂的基因网络进行建模。我们使用状态图对五个关键的基因网络基元进行了建模,包括简单调控、自我调控、前馈回路、单输入模块和密集重叠调控子。具体来说,通过使用嵌套层次结构和递归,我们能够以高度结构化的方式对复杂的互锁前馈回路网络进行建模,展示了我们的方法对大型和复杂基因网络进行建模的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5356/2826420/ce6e07d142c7/pone.0009376.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验