Suppr超能文献

运用信号检测理论对放射影像学解释的序列学习变化进行建模。

Using signal detection theory to model changes in serial learning of radiological image interpretation.

机构信息

Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.

出版信息

Adv Health Sci Educ Theory Pract. 2010 Dec;15(5):647-58. doi: 10.1007/s10459-010-9225-8. Epub 2010 Feb 26.

Abstract

Signal detection theory (SDT) parameters can describe a learner's ability to discriminate (d') normal from abnormal and the learner's criterion (λ) to under or overcall abnormalities. To examine the serial changes in SDT parameters with serial exposure to radiological cases. 46 participants were recruited for this study: 20 medical students (MED), 6 residents (RES), 12 fellows (FEL), 5 staff pediatric emergency physicians (PEM), and 3 staff radiologists (RAD). Each participant was presented with 234 randomly assigned ankle radiographs using a web-based application. Participants were given a clinical scenario and considered 3 views of the ankle. They classified each case as normal or abnormal. For abnormal cases, they specified the location of the abnormality. Immediate feedback included highlighting on the images and the official radiologist's report. The low experience group (MED, RES, FEL) showed steady improvement in discrimination ability with each case, while the high experience group (PEM, RAD) had higher and stable discrimination ability throughout the exercise. There was also a difference in the way the high and low experience groups balanced sensitivity and specificity (λ) with the low experience group tending to make more errors calling positive radiographs negative. This tendency was progressively less evident with each increase in expertise level. SDT metrics provide valuable insight on changes associated with learning radiograph interpretation, and may be used to design more effective instructional strategies for a given learner group.

摘要

信号检测理论 (SDT) 参数可用于描述学习者区分正常和异常的能力(d'),以及学习者对异常情况的判断标准(λ)。为了研究学习者在连续接触放射学病例时 SDT 参数的变化情况,本研究招募了 46 名参与者:20 名医学生(MED)、6 名住院医师(RES)、12 名研究员(FEL)、5 名儿科急诊医生(PEM)和 3 名放射科医生(RAD)。每位参与者都通过基于网络的应用程序接受了 234 张随机分配的踝关节 X 光片。参与者获得了一个临床场景,并考虑了踝关节的 3 个视图。他们将每个病例分类为正常或异常。对于异常病例,他们指定了异常的位置。即时反馈包括在图像上突出显示和官方放射科医生的报告。低经验组(MED、RES、FEL)在每个病例中表现出辨别能力的稳步提高,而高经验组(PEM、RAD)在整个练习中具有更高且稳定的辨别能力。高经验组和低经验组在平衡敏感性和特异性(λ)的方式上也存在差异,低经验组倾向于对阳性 X 光片做出更多的错误判断。随着专业水平的提高,这种趋势逐渐减弱。SDT 指标提供了与学习 X 光片解释相关的变化的有价值的见解,并可用于为特定学习者群体设计更有效的教学策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验