Suppr超能文献

Evidence for the development of an intermonomeric asymmetry in the covalent binding of 4,4'-diisothiocyanatostilbene-2,2'-disulfonate to human erythrocyte band 3.

作者信息

Salhany J M, Sloan R L, Cordes K A

机构信息

Department of Veterans Affairs Medical Center, Omaha, Nebraska 68103.

出版信息

Biochemistry. 1991 Apr 23;30(16):4097-104. doi: 10.1021/bi00230a040.

Abstract

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) studies have identified two oligomeric forms of band 3 whose proportions on gel profiles were modulated by the particular ligand occupying the intramonomeric stilbenedisulfonate site during intermonomeric cross-linking by BS3 [bis-(sulfosuccinimidyl) suberate] [Salhany et al. (1990) J. Biol. Chem. 265, 17688-17693]. When DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate) was irreversibly attached to all monomers, BS3 covalent dimers predominated, while with DNDS (4,4'-dinitrostilbene-2,2'-disulfonate) present to protect the intramonomeric stilbenedisulfonate site from attack by BS3, a partially cross-linked band 3 tetramer was observed. In the present study, we investigate the structure of the protected stilbenedisulfonate site within the tetrameric complex by measuring the ability of patent monomers to react irreversibly with DIDS. Our results show two main populations of band 3 monomers present after reaction with DNDS/BS3: (a) inactive monomers resulting from the displacement of reversibly bound DNDS molecules and subsequent irreversible attachment of BS3 to the intramonomeric stilbenedisulfonate site and (b) residual, active monomers. All of the residual activity was fully inhibitable by DIDS under conditions of reversible binding, confirming expectations that all of the monomers responsible for the residual activity have patent stilbenedisulfonate sites. However, within this active population, two subpopulations could be identified: (1) monomers which were irreversibly reactive toward DIDS and (2) monomers which were refractory toward irreversible binding of DIDS at pH 6.9, despite being capable of binding DIDS reversibly. Increasing the pH to 9.5 during treatment of DNDS/BS3-modified cells with 300 microM DIDS did not cause increased irreversible transport inhibition relative to that seen for cells treated at pH 6.9.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验