Foray N
U836 INSERM, groupe de radiobiologie, institut des neurosciences de Grenoble, bâtiment E.J.-Jaffra, chemin Fortuné-Ferrini, Grenoble, France.
Cancer Radiother. 2010 Apr;14(2):145-54. doi: 10.1016/j.canrad.2009.12.002. Epub 2010 Feb 26.
Each technological development of radiotherapy is an example of interaction between physicians and physicists. In the past, it was the case for the first X-rays generators, betatrons and particle accelerators. To date, this is the case for Cyberknives and intensity modulation radiotherapy. In the future, this will be the case for proton- and hadron-therapy. However, in a general tendency of favouring higher radiation energies, leaving the 250kV orthovoltage irradiators and preferring accelerators delivering some tens MeV to reach the deepest tumours, how to consider the anti-cancer applications of synchrotron radiation that provides X-rays in the 10-100keV "only"? Since the first approaches developed in the USA in seventies until the last preclinical trials performed at the European Synchrotron Radiation Facility of Grenoble, the radiobiological features of the chemoradiotherapy involving synchrotron radiation will be described and analysed throughout a transversal view considering physicochemical bases, biomolecular and cellular mechanisms and results from the preclinical trials in order to provide a general outcome and some eventual transfer perspectives.
放射治疗的每一项技术发展都是医生与物理学家相互协作的实例。过去,第一代X射线发生器、电子感应加速器和粒子加速器便是如此。如今,射波刀和调强放射治疗也是这样。未来,质子和强子治疗亦会如此。然而,在普遍倾向于采用更高辐射能量、淘汰250kV正交电压辐照器而选用能提供几十兆电子伏特以抵达最深层肿瘤的加速器的趋势下,该如何看待仅能提供10 - 100keV X射线的同步辐射的抗癌应用呢?从七十年代美国开展的首批研究直至最近在格勒诺布尔欧洲同步辐射装置进行的临床前试验,我们将从物理化学基础、生物分子和细胞机制以及临床前试验结果等横向视角描述和分析涉及同步辐射的放化疗的放射生物学特征,以便得出总体结论和一些可能的转化前景。