Chen Liying, Gobar Lisa S, Knowles Negar G, Wilson Donald W, Barrett Harrison H
Department of Radiology, University of Arizona, Tucson, AZ 85724 USA.
IEEE Trans Nucl Sci. 2009 Oct 6;56(5):2628-2635. doi: 10.1109/TNS.2009.2023519.
Imaging β rays in vivo will help to advance microdosimetry and radiopharmaceutical development. In an earlier paper [1], we reported a newly developed system capable of directly imaging high-energy electron emissions in small animals in vivo. In this paper, we have thoroughly characterized the performance of the system. We have measured the sensitivity and detectability and the spatial resolution at various magnifications, as well as the linearity of the system. The system has also demonstrated the capability of directly detecting conversion electrons and positrons as well as β rays. The system has been applied to dynamically image spatiotemporal (18)F-Fluorodeoxyglucose (FDG) uptake distributions in xenograft small tumors in dorsal window chambers on mice in vivo. Heterogeneity in FDG uptake in millimeter-sized tumors has been observed.
在体内对β射线进行成像将有助于推进微剂量学和放射性药物的发展。在早期的一篇论文[1]中,我们报道了一种新开发的系统,该系统能够在小动物体内直接对高能电子发射进行成像。在本文中,我们全面表征了该系统的性能。我们测量了该系统在各种放大倍数下的灵敏度、可探测性和空间分辨率,以及系统的线性度。该系统还展示了直接检测转换电子、正电子以及β射线的能力。该系统已应用于在小鼠背窗室中的异种移植小肿瘤内对时空(18)F-氟脱氧葡萄糖(FDG)摄取分布进行动态成像。在毫米大小的肿瘤中观察到了FDG摄取的异质性。