Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
Chemphyschem. 2010 Jun 7;11(8):1693-9. doi: 10.1002/cphc.201000008.
Concentration of oxygen vacancies, optical absorption and microstructure of Ce(0.9)Tb(0.1)O(2-) (delta) material under different atmospheres (O(2), He and H(2)) and temperatures are characterized by in situ X-ray diffraction, in situ Raman spectroscopy and confocal microscopy. In this paper, we focus on how the change in optical absorption of the sample significantly affects the observed Raman information (peak intensity and the variation rule of oxygen vacancy concentration) under in situ conditions. With increasing temperature, the optical absorption of the sample decreases because of the release of oxygen and consequent changes of the microstructure. The decline in the optical absorption enables the Raman laser to increase its sampling depth, therefore, the deeper layer phonons in the structure are also sampled and contribute to the Raman scattering when the same excitation laser line is used. A more pronounced effect is observed when 514 nm laser line is used rather than 785 nm excitation, because both Tb and oxygen vacancies are enriched on the surface of the material and the 514 nm light provides surface information, while 785 nm light provides almost complete information on the sample.
采用原位 X 射线衍射、原位拉曼光谱和共聚焦显微镜研究了不同气氛(O2、He 和 H2)和温度下 Ce(0.9)Tb(0.1)O(2-) (δ)材料中氧空位浓度、光学吸收和微结构的变化。本文重点研究了样品光学吸收的变化如何显著影响原位条件下观察到的拉曼信息(峰强度和氧空位浓度的变化规律)。随着温度的升高,由于氧的释放和微结构的变化,样品的光学吸收降低。光学吸收的降低使 Raman 激光能够增加其采样深度,因此,当使用相同的激发激光线时,结构中更深层的声子也被采样并对 Raman 散射做出贡献。当使用 514nm 激光线而不是 785nm 激发时,观察到更明显的效果,因为 Tb 和氧空位都富集在材料的表面,514nm 光提供表面信息,而 785nm 光提供样品的几乎完整信息。