Department of Chemistry, Unilever Centre for Molecular Sciences Informatics, Cambridge University, CB2 1EW Cambridge, United Kingdom.
J Chem Phys. 2010 Feb 28;132(8):084104. doi: 10.1063/1.3328781.
Conformational transitions in proteins define their biological activity and can be investigated in detail using the Markov state model. The fundamental assumption on the transitions between the states, their Markov property, is critical in this framework. We test this assumption by analyzing the transitions obtained directly from the dynamics of a molecular dynamics simulated peptide valine-proline-alanine-leucine and states defined phenomenologically using clustering in dihedral space. We find that the transitions are Markovian at the time scale of approximately 50 ps and longer. However, at the time scale of 30-40 ps the dynamics loses its Markov property. Our methodology reveals the mechanism that leads to non-Markov behavior. It also provides a way of regrouping the conformations into new states that now possess the required Markov property of their dynamics.
蛋白质构象转变定义了它们的生物学活性,可以使用马尔可夫状态模型详细研究。在这个框架中,状态之间转变的基本假设,即马尔可夫性质,是至关重要的。我们通过分析直接从分子动力学模拟的缬氨酸-脯氨酸-丙氨酸-亮氨酸肽的动力学中获得的转变以及在二面角空间中使用聚类方法定义的状态来检验这个假设。我们发现,在大约 50 ps 及更长的时间尺度上,转变是马尔可夫的。然而,在 30-40 ps 的时间尺度上,动力学失去了马尔可夫性质。我们的方法揭示了导致非马尔可夫行为的机制。它还提供了一种将构象重新组合成具有其动力学所需马尔可夫性质的新状态的方法。