Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.
Annu Rev Biophys. 2010;39:139-58. doi: 10.1146/annurev.biophys.050708.133630.
To obtain protein crystals, researchers must search for conditions in multidimensional chemical space. Empirically, thousands of crystallization experiments are carried out to screen various precipitants at multiple concentrations. Microfluidics can manipulate fluids on a nanoliter scale, and it affects crystallization twofold. First, it miniaturizes the experiments that can currently be done on a larger scale and enables crystallization of proteins that are available only in small amounts. Second, it offers unique experimental approaches that are difficult or impossible to implement on a larger scale. Ongoing development of microfluidic techniques and their integration with protein production, characterization, and in situ diffraction promises to accelerate the progress of structural biology.
为了获得蛋白质晶体,研究人员必须在多维化学空间中寻找条件。从经验上看,需要进行数千次结晶实验来筛选多种沉淀剂在多个浓度下的效果。微流控技术可以在纳升尺度上操纵流体,它对结晶有两方面的影响。首先,它使目前在较大规模上进行的实验微型化,并使仅少量存在的蛋白质能够结晶。其次,它提供了一些独特的实验方法,这些方法在较大规模上很难或不可能实现。微流控技术的不断发展及其与蛋白质生产、表征和原位衍射的集成有望加速结构生物学的发展。