Tazikeh Lemeski Azadeh, Seyyedi Seyyed Masoud, Hashemi-Tilehnoee Mehdi, Naeimi Azadeh Sadat
Department of Mechanical Engineering, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran.
Department of Physics, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran.
Sci Rep. 2024 Jun 10;14(1):13324. doi: 10.1038/s41598-024-63922-y.
Microfluidic devices with complex geometries and obstacles have attracted considerable interest in biomedical engineering and chemical analysis. Understanding droplet breakup behavior within these systems is crucial for optimizing their design and performance. This study investigates the influence of triangular obstacles on droplet breakup processes in microchannels. Two distinct types of triangular obstructions, positioned at the bifurcation (case I) and aligned with the flow (case II), are analyzed to evaluate their impact on droplet behavior. The investigation considers various parameters, including the Capillary number (Ca), non-dimensional droplet length (L*), non-dimensional height (A*), and non-dimensional base length (B*) of the triangle. Utilizing numerical simulations with COMSOL software, the study reveals that the presence of triangular obstacles significantly alters droplet breakup dynamics. Importantly, the shape and location of the obstacle emerge as key factors governing breakup characteristics. Results indicate faster breakup of the initial droplet when the obstacle is positioned in the center of the microchannel for case I. For case II, the study aims to identify conditions under which droplets either break up into unequal-sized entities or remain intact, depending on various flow conditions. The findings identify five distinct regimes: no breakup, breakup without a tunnel, breakup with a tunnel, droplet fragmentation into unequal-sized parts, and sorting. These regimes depend on the presence or absence of triangular obstacles and the specific flow conditions. This investigation enhances our understanding of droplet behavior within intricate microfluidic systems and provides valuable insights for optimizing the design and functionality of droplet manipulation and separation devices. Notably, the results emphasize the significant role played by triangular obstacles in droplet breakup dynamics, with the obstacle's shape and position being critical determinants of breakup characteristics.
具有复杂几何形状和障碍物的微流控装置在生物医学工程和化学分析领域引起了广泛关注。了解这些系统内的液滴破裂行为对于优化其设计和性能至关重要。本研究调查了三角形障碍物对微通道中液滴破裂过程的影响。分析了两种不同类型的三角形障碍物,一种位于分叉处(情况I),另一种与流动方向对齐(情况II),以评估它们对液滴行为的影响。该研究考虑了各种参数,包括毛细管数(Ca)、无量纲液滴长度(L*)、无量纲高度(A*)和三角形的无量纲底边长度(B*)。利用COMSOL软件进行数值模拟,研究表明三角形障碍物的存在显著改变了液滴破裂动力学。重要的是,障碍物的形状和位置成为控制破裂特性的关键因素。结果表明,在情况I中,当障碍物位于微通道中心时,初始液滴的破裂速度更快。对于情况II,该研究旨在确定在各种流动条件下液滴是分裂成大小不等的实体还是保持完整的条件。研究结果确定了五种不同的状态:不破裂、无通道破裂、有通道破裂、液滴破碎成大小不等的部分以及分选。这些状态取决于三角形障碍物的有无以及特定的流动条件。这项研究增进了我们对复杂微流控系统中液滴行为的理解,并为优化液滴操纵和分离装置的设计和功能提供了有价值的见解。值得注意的是,结果强调了三角形障碍物在液滴破裂动力学中所起的重要作用,障碍物的形状和位置是破裂特性的关键决定因素。