Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30022, USA.
Brain Res. 2010 Apr 22;1326:15-29. doi: 10.1016/j.brainres.2010.02.061. Epub 2010 Feb 26.
Techniques to induce activity-dependent neuronal plasticity in vivo allow the underlying signaling pathways to be studied in their biological context. Here, we demonstrate activity-induced plasticity at neuromuscular synapses of Drosophila double mutant for comatose (an NSF mutant) and Kum (a SERCA mutant), and present an analysis of the underlying signaling pathways. comt; Kum (CK) double mutants exhibit increased locomotor activity under normal culture conditions, concomitant with a larger neuromuscular junction synapse and stably elevated evoked transmitter release. The observed enhancements of synaptic size and transmitter release in CK mutants are completely abrogated by: a) reduced activity of motor neurons; b) attenuation of the Ras/ERK signaling cascade; or c) inhibition of the transcription factors Fos and CREB. All of which restrict synaptic properties to near wild type levels. Together, these results document neural activity-dependent plasticity of motor synapses in CK animals that requires Ras/ERK signaling and normal transcriptional activity of Fos and CREB. Further, novel in vivo reporters of neuronal Ras activation and Fos transcription also confirm increased signaling through a Ras/AP-1 pathway in motor neurons of CK animals, consistent with results from our genetic experiments. Thus, this study: a) provides a robust system in which to study activity-induced synaptic plasticity in vivo; b) establishes a causal link between neural activity, Ras signaling, transcriptional regulation and pre-synaptic plasticity in glutamatergic motor neurons of Drosophila larvae; and c) presents novel, genetically encoded reporters for Ras and AP-1 dependent signaling pathways in Drosophila.
在体诱导活性依赖性神经元可塑性的技术可使其潜在的信号通路在其生物背景下进行研究。在这里,我们证明了果蝇 coma(一种 NSF 突变体)和 Kum(一种 SERCA 突变体)双突变体的神经肌肉突触中的活性诱导的可塑性,并对其潜在的信号通路进行了分析。comt; Kum(CK)双突变体在正常培养条件下表现出更高的运动活性,伴随着更大的神经肌肉接头突触和稳定升高的诱发递质释放。在 CK 突变体中观察到的突触大小和递质释放的增强完全被以下因素消除:a)运动神经元活性降低;b)Ras/ERK 信号级联的衰减;或 c)转录因子 Fos 和 CREB 的抑制。所有这些因素都将突触特性限制在接近野生型水平。总之,这些结果证明了 CK 动物运动突触的神经活性依赖性可塑性,需要 Ras/ERK 信号和 Fos 和 CREB 的正常转录活性。此外,神经元 Ras 激活和 Fos 转录的新型体内报告器也证实了 CK 动物运动神经元中 Ras/AP-1 途径的信号传递增加,与我们的遗传实验结果一致。因此,本研究:a)提供了一个强大的系统,可在体内研究活性诱导的突触可塑性;b)在果蝇幼虫谷氨酸能运动神经元中建立了神经活动、Ras 信号、转录调节和前突触可塑性之间的因果关系;c)为果蝇中 Ras 和 AP-1 依赖性信号通路提供了新型的遗传编码报告器。