Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, Illinois 60637.
Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637.
J Neurosci. 2021 Feb 17;41(7):1401-1417. doi: 10.1523/JNEUROSCI.1492-20.2020. Epub 2021 Jan 5.
Throughout the nervous system, the convergence of two or more presynaptic inputs on a target cell is commonly observed. The question we ask here is to what extent converging inputs influence each other's structural and functional synaptic plasticity. In complex circuits, isolating individual inputs is difficult because postsynaptic cells can receive thousands of inputs. An ideal model to address this question is the larval neuromuscular junction (NMJ) where each postsynaptic muscle cell receives inputs from two glutamatergic types of motor neurons (MNs), known as 1b and 1s MNs. Notably, each muscle is unique and receives input from a different combination of 1b and 1s MNs; we surveyed multiple muscles for this reason. Here, we identified a cell-specific promoter that allows ablation of 1s MNs postinnervation and measured structural and functional responses of convergent 1b NMJs using microscopy and electrophysiology. For all muscles examined in both sexes, ablation of 1s MNs resulted in NMJ expansion and increased spontaneous neurotransmitter release at corresponding 1b NMJs. This demonstrates that 1b NMJs can compensate for the loss of convergent 1s MNs. However, only a subset of 1b NMJs showed compensatory evoked neurotransmission, suggesting target-specific plasticity. Silencing 1s MNs led to similar plasticity at 1b NMJs, suggesting that evoked neurotransmission from 1s MNs contributes to 1b synaptic plasticity. Finally, we genetically blocked 1s innervation in male larvae and robust 1b synaptic plasticity was eliminated, raising the possibility that 1s NMJ formation is required to set up a reference for subsequent synaptic perturbations. In complex neural circuits, multiple convergent inputs contribute to the activity of the target cell, but whether synaptic plasticity exists among these inputs has not been thoroughly explored. In this study, we examined synaptic plasticity in the structurally and functionally tractable larval neuromuscular system. In this convergent circuit, each muscle is innervated by a unique pair of motor neurons. Removal of one neuron after innervation causes the adjacent neuron to increase neuromuscular junction outgrowth and functional output. However, this is not a general feature as each motor neuron differentially compensates. Further, robust compensation requires initial coinnervation by both neurons. Understanding how neurons respond to perturbations in adjacent neurons will provide insight into nervous system plasticity in both healthy and disease states.
在整个神经系统中,两个或多个突触前输入在靶细胞上的汇聚是常见的。我们在这里提出的问题是,汇聚的输入在多大程度上影响彼此的结构和功能突触可塑性。在复杂的电路中,分离单个输入是困难的,因为突触后细胞可以接收数千个输入。解决这个问题的理想模型是幼虫的神经肌肉接头(NMJ),其中每个突触后肌肉细胞接收来自两种谷氨酸能运动神经元(MNs)的输入,称为 1b 和 1s MNs。值得注意的是,每个肌肉都是独特的,并且接收来自不同的 1b 和 1s MNs 的输入组合;我们出于这个原因调查了多个肌肉。在这里,我们确定了一种细胞特异性启动子,该启动子允许在神经支配后消融 1s MNs,并使用显微镜和电生理学测量汇聚的 1b NMJs 的结构和功能反应。对于在两性中检查的所有肌肉,消融 1s MNs 导致 NMJ 扩张,并增加相应的 1b NMJs 中的自发神经递质释放。这表明 1b NMJs 可以补偿汇聚的 1s MNs 的损失。然而,只有一部分 1b NMJs 显示出补偿性诱发的神经传递,表明靶特异性可塑性。沉默 1s MNs 导致 1b NMJs 中出现类似的可塑性,表明来自 1s MNs 的诱发神经传递有助于 1b 突触可塑性。最后,我们在雄性幼虫中遗传阻断了 1s 神经支配,消除了强烈的 1b 突触可塑性,这提出了 1s NMJ 形成对于建立后续突触干扰的参考的可能性。在复杂的神经电路中,多个汇聚的输入有助于靶细胞的活动,但这些输入之间是否存在突触可塑性尚未得到彻底探索。在这项研究中,我们检查了结构和功能上可追踪的幼虫神经肌肉系统中的突触可塑性。在这个汇聚电路中,每个肌肉都由一对独特的运动神经元支配。神经支配后,一个神经元的去除会导致相邻神经元增加神经肌肉接头的生长和功能输出。然而,这不是一个普遍的特征,因为每个运动神经元都有不同的补偿。此外,强烈的补偿需要两个神经元的初始共同支配。了解神经元如何响应相邻神经元的干扰将为健康和疾病状态下的神经系统可塑性提供深入的了解。