文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自然牙表面的口腔生物膜结构。

Oral biofilm architecture on natural teeth.

机构信息

Center for Dentistry and Oral Hygiene, University of Groningen, Groningen, The Netherlands.

出版信息

PLoS One. 2010 Feb 24;5(2):e9321. doi: 10.1371/journal.pone.0009321.


DOI:10.1371/journal.pone.0009321
PMID:20195365
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2827546/
Abstract

Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.

摘要

牙周炎和龋齿是口腔传染病,口腔生物膜在其中起致病作用。此外,由于口腔生物膜广泛存在且易于获取,因此被广泛研究作为细菌黏附、生物膜形成和生物膜对抗生素耐药性的模型系统。尽管已有关于牙面初始菌斑形成的描述,但对成熟菌斑和龈下菌斑结构的研究仅限于 20 世纪 70 年代的里程碑式研究,而没有充分认识到菌斑中微生物多样性的广泛程度。我们使用荧光原位杂交技术,在从四个不同供体获得的七颗嵌入式牙齿上,对来自不同门的最丰富物种和与牙周炎相关的物种进行体内定位。这些数据令人信服地表明,龈下菌斑中放线菌属、福赛斯坦纳菌、核梭杆菌、螺旋体和共生菌的丰度最高。后者由于其在免疫细胞附近的定位而被证明是新的,并且由于其在宿主-病原体相互作用中的可能重要作用而具有重要意义。本研究首次在体内鉴定出,在龈下菌斑中,乳杆菌属是细菌聚集体的中心细胞,而链球菌属和酵母白色念珠菌在龈上菌斑中形成玉米芯结构。最后,牙周病原体定植于已形成的生物膜中并在其中形成微菌落。这些关于口腔生物膜的体内观察为生物膜结构和优势物种的空间分布提供了清晰的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/29e1e55fc725/pone.0009321.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/36bc2948ea8b/pone.0009321.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/38c53dc0e1ac/pone.0009321.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/8c84748cc153/pone.0009321.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/b8252154237a/pone.0009321.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/29e1e55fc725/pone.0009321.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/36bc2948ea8b/pone.0009321.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/38c53dc0e1ac/pone.0009321.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/8c84748cc153/pone.0009321.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/b8252154237a/pone.0009321.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98f/2827546/29e1e55fc725/pone.0009321.g005.jpg

相似文献

[1]
Oral biofilm architecture on natural teeth.

PLoS One. 2010-2-24

[2]
Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle.

Mol Oral Microbiol. 2017-2

[3]
Does assessment of microbial composition of plaque/saliva allow for diagnosis of disease activity of individuals?

Community Dent Oral Epidemiol. 1997-2

[4]
The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization.

J Med Microbiol. 2007-5

[5]
Subgingival biofilm structure.

Front Oral Biol. 2012

[6]
Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models.

Front Microbiol. 2019-7-30

[7]
β-Glucanase Activity of the Oral Bacterium Tannerella forsythia Contributes to the Growth of a Partner Species, Fusobacterium nucleatum, in Cobiofilms.

Appl Environ Microbiol. 2017-12-15

[8]
Comparison of microbial changes in early redeveloping biofilms on natural teeth and dentures.

J Periodontol. 2012-3-23

[9]
Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system.

Arch Oral Biol. 2000-1

[10]
Quantification of carious pathogens in the interdental microbiota of young caries-free adults.

PLoS One. 2017-10-10

引用本文的文献

[1]
Clinical and microscopic evidence of biofilm formation on titanium miniplates applied in maxillofacial surgery: a case series analysis.

Case Reports Plast Surg Hand Surg. 2025-7-26

[2]
Formation, architecture, and persistence of oral biofilms: recent scientific discoveries and new strategies for their regulation.

Front Microbiol. 2025-7-9

[3]
Biofilms and oral health: nanotechnology for biofilm control.

Discov Nano. 2025-7-16

[4]
Full-length 16S rRNA sequencing reveals microbial characteristics in supragingival plaque of periodontitis patients.

J Dent Sci. 2025-7

[5]
Microbiome variability and role of in site-specific dental plaques in orthodontic adolescent patients with white spot lesions.

J Oral Microbiol. 2025-6-30

[6]
Exploring heme and iron acquisition strategies of Porphyromonas gingivalis-current facts and hypotheses.

FEMS Microbiol Rev. 2025-1-14

[7]
Synthesis of 4-azido sialic acid for testing against Siglec-7 and in metabolic oligosaccharide engineering.

RSC Chem Biol. 2025-4-17

[8]
Anti-adherence capacity of phytosphingosine on titanium surfaces.

J Biomater Appl. 2025-9

[9]
Effects of 3'-sialyllactose, saliva, and colostrum on Candida albicans biofilms.

Einstein (Sao Paulo). 2025-3-24

[10]
The Oral Microbiome: A Key Determinant of Oral Health.

Adv Exp Med Biol. 2025

本文引用的文献

[1]
Design and evaluation of group-specific oligonucleotide probes for quantitative analysis of intestinal ecosystems: their application to assessment of equine colonic microflora.

FEMS Microbiol Ecol. 2003-5-1

[2]
Focus: Synergistetes.

Environ Microbiol. 2009-6

[3]
Actinomyces naeslundii in initial dental biofilm formation.

Microbiology (Reading). 2009-7

[4]
Diversity and morphology of members of the phylum "synergistetes" in periodontal health and disease.

Appl Environ Microbiol. 2009-6

[5]
Uncultivated Tannerella BU045 and BU063 are slim segmented filamentous rods of high prevalence but low abundance in inflammatory disease-associated dental plaques.

Microbiology (Reading). 2007-11

[6]
SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB.

Nucleic Acids Res. 2007

[7]
Development of 16S rRNA-based probes for the identification of Gram-positive anaerobic cocci isolated from human clinical specimens.

Clin Microbiol Infect. 2007-10

[8]
Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ.

Arch Oral Biol. 2007-11

[9]
A novel TEM contrasting technique for extracellular polysaccharides in in vitro biofilms.

Microsc Res Tech. 2007-9

[10]
The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization.

J Med Microbiol. 2007-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索