Suppr超能文献

蛋白质-配体结合时 pK 值和离子化状态变化的统计和物理起源。

Statistics and physical origins of pK and ionization state changes upon protein-ligand binding.

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, USA.

出版信息

Biophys J. 2010 Mar 3;98(5):872-80. doi: 10.1016/j.bpj.2009.11.016.

Abstract

This work investigates statistical prevalence and overall physical origins of changes in charge states of receptor proteins upon ligand binding. These changes are explored as a function of the ligand type (small molecule, protein, and nucleic acid), and distance from the binding region. Standard continuum solvent methodology is used to compute, on an equal footing, pK changes upon ligand binding for a total of 5899 ionizable residues in 20 protein-protein, 20 protein-small molecule, and 20 protein-nucleic acid high-resolution complexes. The size of the data set combined with an extensive error and sensitivity analysis allows us to make statistically justified and conservative conclusions: in 60% of all protein-small molecule, 90% of all protein-protein, and 85% of all protein-nucleic acid complexes there exists at least one ionizable residue that changes its charge state upon ligand binding at physiological conditions (pH = 6.5). Considering the most biologically relevant pH range of 4-8, the number of ionizable residues that experience substantial pK changes (DeltapK > 1.0) due to ligand binding is appreciable: on average, 6% of all ionizable residues in protein-small molecule complexes, 9% in protein-protein, and 12% in protein-nucleic acid complexes experience a substantial pK change upon ligand binding. These changes are safely above the statistical false-positive noise level. Most of the changes occur in the immediate binding interface region, where approximately one out of five ionizable residues experiences substantial pK change regardless of the ligand type. However, the physical origins of the change differ between the types: in protein-nucleic acid complexes, the pK values of interface residues are predominantly affected by electrostatic effects, whereas in protein-protein and protein-small molecule complexes, structural changes due to the induced-fit effect play an equally important role. In protein-protein and protein-nucleic acid complexes, there is a statistically significant number of substantial pK perturbations, mostly due to the induced-fit structural changes, in regions far from the binding interface.

摘要

这项工作研究了配体结合后受体蛋白电荷状态变化的统计流行率和整体物理起源。这些变化作为配体类型(小分子、蛋白质和核酸)以及与结合区域的距离的函数进行了探索。标准连续溶剂方法学用于在平等的基础上计算总共 5899 个可离子化残基在 20 个蛋白-蛋白、20 个蛋白-小分子和 20 个蛋白-核酸高分辨率复合物中配体结合时的 pK 变化。数据集的大小加上广泛的误差和敏感性分析使我们能够做出具有统计学依据和保守的结论:在 60%的所有蛋白-小分子、90%的所有蛋白-蛋白和 85%的所有蛋白-核酸复合物中,至少存在一个可离子化残基在生理条件(pH = 6.5)下配体结合时会改变其电荷状态。考虑到最具生物学意义的 pH 值范围为 4-8,由于配体结合而经历显著 pK 变化(DeltapK > 1.0)的可离子化残基数量是可观的:平均而言,蛋白-小分子复合物中 6%的所有可离子化残基、蛋白-蛋白中 9%和蛋白-核酸复合物中 12%的可离子化残基在配体结合时会发生显著的 pK 变化。这些变化远远高于统计假阳性噪声水平。大多数变化发生在直接结合界面区域,无论配体类型如何,大约五分之一的可离子化残基经历了显著的 pK 变化。然而,变化的物理起源因类型而异:在蛋白-核酸复合物中,界面残基的 pK 值主要受到静电效应的影响,而在蛋白-蛋白和蛋白-小分子复合物中,诱导契合效应引起的结构变化同样起着重要作用。在蛋白-蛋白和蛋白-核酸复合物中,在远离结合界面的区域,存在大量由于诱导契合结构变化而导致的显著 pK 干扰,这具有统计学意义。

相似文献

1
Statistics and physical origins of pK and ionization state changes upon protein-ligand binding.
Biophys J. 2010 Mar 3;98(5):872-80. doi: 10.1016/j.bpj.2009.11.016.
2
Protonation and pK changes in protein-ligand binding.
Q Rev Biophys. 2013 May;46(2):181-209. doi: 10.1017/S0033583513000024.
4
Very fast prediction and rationalization of pKa values for protein-ligand complexes.
Proteins. 2008 Nov 15;73(3):765-83. doi: 10.1002/prot.22102.
5
Exploring the charge space of protein-protein association: a proteomic study.
Proteins. 2005 Aug 15;60(3):341-52. doi: 10.1002/prot.20489.
8
MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.
Proteins. 2011 Dec;79(12):3306-19. doi: 10.1002/prot.23124. Epub 2011 Sep 9.
9
Biophysical limits of protein-ligand binding.
J Chem Inf Model. 2012 Aug 27;52(8):2098-106. doi: 10.1021/ci200612f. Epub 2012 Jul 18.

引用本文的文献

1
Prediction of the Trimer Protein Interface Residue Pair by CNN-GRU Model Based on Multi-Feature Map.
Nanomaterials (Basel). 2025 Jan 24;15(3):188. doi: 10.3390/nano15030188.
2
The role of ribosomal protein networks in ribosome dynamics.
Nucleic Acids Res. 2025 Jan 7;53(1). doi: 10.1093/nar/gkae1308.
6
Characterizing Protein Protonation Microstates Using Monte Carlo Sampling.
J Phys Chem B. 2022 Apr 7;126(13):2476-2485. doi: 10.1021/acs.jpcb.2c00139. Epub 2022 Mar 28.
7
Approach to Study pH-Dependent Protein Association Using Constant-pH Molecular Dynamics: Application to the Dimerization of β-Lactoglobulin.
J Chem Theory Comput. 2022 Mar 8;18(3):1982-2001. doi: 10.1021/acs.jctc.1c01187. Epub 2022 Feb 16.
8
Evaluation of log P, pK, and log D predictions from the SAMPL7 blind challenge.
J Comput Aided Mol Des. 2021 Jul;35(7):771-802. doi: 10.1007/s10822-021-00397-3. Epub 2021 Jun 24.
9
Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations.
J Chem Theory Comput. 2021 Apr 13;17(4):2541-2555. doi: 10.1021/acs.jctc.0c01305. Epub 2021 Mar 25.

本文引用的文献

1
We have a new publisher: John Wiley & Sons.
Biochem Mol Biol Educ. 2007 Jan;35(1):1. doi: 10.1002/bmb.20.
3
Inclusion of ionization states of ligands in affinity calculations.
Proteins. 2009 Jul;76(1):138-50. doi: 10.1002/prot.22326.
4
A fast and accurate computational approach to protein ionization.
Protein Sci. 2008 Nov;17(11):1955-70. doi: 10.1110/ps.036335.108. Epub 2008 Aug 19.
5
Biochemistry. How do proteins interact?
Science. 2008 Jun 13;320(5882):1429-30. doi: 10.1126/science.1158818.
6
Very fast prediction and rationalization of pKa values for protein-ligand complexes.
Proteins. 2008 Nov 15;73(3):765-83. doi: 10.1002/prot.22102.
8
Structural identification of the pathway of long-range communication in an allosteric enzyme.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1832-7. doi: 10.1073/pnas.0710894105. Epub 2008 Feb 4.
9
NPIDB: a database of nucleic acids-protein interactions.
Bioinformatics. 2007 Dec 1;23(23):3247-8. doi: 10.1093/bioinformatics/btm519. Epub 2007 Oct 31.
10
Protein-protein binding is often associated with changes in protonation state.
Proteins. 2008 Apr;71(1):81-91. doi: 10.1002/prot.21657.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验