Suppr超能文献

转录因子ATF4在禁食期间促进骨骼肌纤维萎缩。

The transcription factor ATF4 promotes skeletal myofiber atrophy during fasting.

作者信息

Ebert Scott M, Monteys Alex Mas, Fox Daniel K, Bongers Kale S, Shields Bridget E, Malmberg Sharon E, Davidson Beverly L, Suneja Manish, Adams Christopher M

机构信息

Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.

出版信息

Mol Endocrinol. 2010 Apr;24(4):790-9. doi: 10.1210/me.2009-0345. Epub 2010 Mar 2.

Abstract

Prolonged fasting alters skeletal muscle gene expression in a manner that promotes myofiber atrophy, but the underlying mechanisms are not fully understood. Here, we examined the potential role of activating transcription factor 4 (ATF4), a transcription factor with an evolutionarily ancient role in the cellular response to starvation. In mouse skeletal muscle, fasting increases the level of ATF4 mRNA. To determine whether increased ATF4 expression was required for myofiber atrophy, we reduced ATF4 expression with an inhibitory RNA targeting ATF4 and found that it reduced myofiber atrophy during fasting. Likewise, reducing the fasting level of ATF4 mRNA with a phosphorylation-resistant form of eukaryotic initiation factor 2alpha decreased myofiber atrophy. To determine whether ATF4 was sufficient to reduce myofiber size, we overexpressed ATF4 and found that it reduced myofiber size in the absence of fasting. In contrast, a transcriptionally inactive ATF4 construct did not reduce myofiber size, suggesting a requirement for ATF4-mediated transcriptional regulation. To begin to determine the mechanism of ATF4-mediated myofiber atrophy, we compared the effects of fasting and ATF4 overexpression on global skeletal muscle mRNA expression. Interestingly, expression of ATF4 increased a small subset of five fasting-responsive mRNAs, including four of the 15 mRNAs most highly induced by fasting. These five mRNAs encode proteins previously implicated in growth suppression (p21(Cip1/Waf1), GADD45alpha, and PW1/Peg3) or titin-based stress signaling [muscle LIM protein (MLP) and cardiac ankyrin repeat protein (CARP)]. Taken together, these data identify ATF4 as a novel mediator of skeletal myofiber atrophy during starvation.

摘要

长期禁食会改变骨骼肌基因表达,从而促进肌纤维萎缩,但其潜在机制尚未完全明确。在此,我们研究了激活转录因子4(ATF4)的潜在作用,ATF4是一种在细胞对饥饿的反应中具有古老进化作用的转录因子。在小鼠骨骼肌中,禁食会增加ATF4 mRNA的水平。为了确定肌纤维萎缩是否需要增加ATF4表达,我们用靶向ATF4的抑制性RNA降低了ATF4表达,发现这减少了禁食期间的肌纤维萎缩。同样,用真核起始因子2α的磷酸化抗性形式降低ATF4 mRNA的禁食水平也减少了肌纤维萎缩。为了确定ATF4是否足以减小肌纤维大小,我们过表达了ATF4,发现它在没有禁食的情况下减小了肌纤维大小。相比之下,转录无活性的ATF4构建体并没有减小肌纤维大小,这表明需要ATF4介导的转录调控。为了开始确定ATF4介导的肌纤维萎缩机制,我们比较了禁食和ATF4过表达对整体骨骼肌mRNA表达的影响。有趣的是,ATF4的表达增加了一小部分由五个对禁食有反应的mRNA组成的子集,其中包括禁食诱导程度最高的15个mRNA中的4个。这五个mRNA编码的蛋白质先前被认为与生长抑制(p21(Cip1/Waf1)、GADD45α和PW1/Peg3)或基于肌联蛋白的应激信号传导[肌肉LIM蛋白(MLP)和心脏锚蛋白重复蛋白(CARP)]有关。综上所述,这些数据确定ATF4是饥饿期间骨骼肌纤维萎缩的一种新型介质。

相似文献

1
The transcription factor ATF4 promotes skeletal myofiber atrophy during fasting.
Mol Endocrinol. 2010 Apr;24(4):790-9. doi: 10.1210/me.2009-0345. Epub 2010 Mar 2.
2
Role of ATF4 in skeletal muscle atrophy.
Curr Opin Clin Nutr Metab Care. 2017 May;20(3):164-168. doi: 10.1097/MCO.0000000000000362.
5
p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization.
Am J Physiol Endocrinol Metab. 2014 Aug 1;307(3):E245-61. doi: 10.1152/ajpendo.00010.2014. Epub 2014 Jun 3.
6
Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4.
Am J Physiol Endocrinol Metab. 2013 Oct 1;305(7):E907-15. doi: 10.1152/ajpendo.00380.2013. Epub 2013 Aug 13.
7
Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy.
J Biol Chem. 2012 Aug 10;287(33):27290-301. doi: 10.1074/jbc.M112.374777. Epub 2012 Jun 12.
8
Thbs1 regulates skeletal muscle mass in a TGFβ-Smad2/3-ATF4-dependent manner.
Cell Rep. 2024 May 28;43(5):114149. doi: 10.1016/j.celrep.2024.114149. Epub 2024 Apr 26.
10
Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy.
Am J Physiol Endocrinol Metab. 2015 Jan 15;308(2):E144-58. doi: 10.1152/ajpendo.00472.2014. Epub 2014 Nov 18.

引用本文的文献

1
Transcriptional Readthrough at Locus Suppresses and Impairs Heart Development.
bioRxiv. 2025 Aug 29:2025.08.26.672495. doi: 10.1101/2025.08.26.672495.
3
Intracellular Membrane Contact Sites in Skeletal Muscle Cells.
Membranes (Basel). 2025 Jan 14;15(1):29. doi: 10.3390/membranes15010029.
4
Transcriptome sequencing analysis reveals the molecular mechanism of sepsis-induced muscle atrophy.
J Thorac Dis. 2024 Nov 30;16(11):7751-7770. doi: 10.21037/jtd-24-1665. Epub 2024 Nov 29.
5
Human DBR1 deficiency impairs stress granule-dependent PKR antiviral immunity.
J Exp Med. 2025 Jan 6;222(1). doi: 10.1084/jem.20240010. Epub 2024 Dec 5.
6
Cell type mapping of inflammatory muscle diseases highlights selective myofiber vulnerability in inclusion body myositis.
Nat Aging. 2024 Jul;4(7):969-983. doi: 10.1038/s43587-024-00645-9. Epub 2024 Jun 4.
7
Thbs1 regulates skeletal muscle mass in a TGFβ-Smad2/3-ATF4-dependent manner.
Cell Rep. 2024 May 28;43(5):114149. doi: 10.1016/j.celrep.2024.114149. Epub 2024 Apr 26.
8
iMPAQT reveals that adequate mitohormesis from TFAM overexpression leads to life extension in mice.
Life Sci Alliance. 2024 Apr 25;7(7). doi: 10.26508/lsa.202302498. Print 2024 Jul.
9
Targeting PERK-ATF4-P21 axis enhances the sensitivity of osteosarcoma HOS cells to Mppα-PDT.
Aging (Albany NY). 2024 Feb 5;16(3):2789-2811. doi: 10.18632/aging.205511.
10
Human myofiber-enriched aging-induced lncRNA FRAIL1 promotes loss of skeletal muscle function.
Aging Cell. 2024 Apr;23(4):e14097. doi: 10.1111/acel.14097. Epub 2024 Jan 31.

本文引用的文献

1
Muscle LIM protein interacts with cofilin 2 and regulates F-actin dynamics in cardiac and skeletal muscle.
Mol Cell Biol. 2009 Nov;29(22):6046-58. doi: 10.1128/MCB.00654-09. Epub 2009 Sep 14.
2
During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation.
J Cell Biol. 2009 Jun 15;185(6):1083-95. doi: 10.1083/jcb.200901052. Epub 2009 Jun 8.
3
Smad2 and 3 transcription factors control muscle mass in adulthood.
Am J Physiol Cell Physiol. 2009 Jun;296(6):C1248-57. doi: 10.1152/ajpcell.00104.2009. Epub 2009 Apr 8.
4
Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo.
PLoS One. 2009;4(3):e4973. doi: 10.1371/journal.pone.0004973. Epub 2009 Mar 25.
5
Differential skeletal muscle gene expression after upper or lower motor neuron transection.
Pflugers Arch. 2009 Jul;458(3):525-35. doi: 10.1007/s00424-009-0643-5. Epub 2009 Feb 13.
6
Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling.
FEBS J. 2009 Feb;276(3):669-84. doi: 10.1111/j.1742-4658.2008.06814.x.
7
Skeletal muscle is a primary target of SOD1G93A-mediated toxicity.
Cell Metab. 2008 Nov;8(5):425-36. doi: 10.1016/j.cmet.2008.09.002.
8
The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy.
FASEB J. 2009 Feb;23(2):362-70. doi: 10.1096/fj.08-114249. Epub 2008 Sep 30.
9
Growth arrest and DNA damage-45 alpha (GADD45alpha).
Int J Biochem Cell Biol. 2009 May;41(5):986-9. doi: 10.1016/j.biocel.2008.06.018. Epub 2008 Aug 5.
10
Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs.
RNA. 2008 Sep;14(9):1834-44. doi: 10.1261/rna.1062908. Epub 2008 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验